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Introduction

The collision frequency is often small compared to other typical frequencies in the core of
tokamaks. It is nevertheless important to correctly describe the effect of collisions as they impact
the level of turbulence either directly (TEM) or via zonal flow damping (ITG). Collisions are
furthermore instrumental for neoclassical physics which is important for large scale flows and
impurity transport. Collisions also damp small scales fluctuations in the velocity space, allowing
for long time simulations.

In the edge, the collision frequency and the turbulence intensity increase compared with the
one of the core. Hence the linearization of the collision operator is questionable for edge simu-
lations.

In this context, an approximated version of the nonlinear Coulomb operator in the drift kinetic
limit has been derived and implemented in the gyrokinetic code ORBS5 [1]. This operator, which
is based on a moment approach to compute the Rosenbluth potentials, is valid for arbitrary

species (mass, charge and concentration).

Description of the collision operator

The collision operator of a species a colliding on a species b can be written as a Fokker-planck

operator
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where 7, = %ln/\ with InA the Coulomb logarithm, e;, mg and F; are respectively the

charge, mass and distribution function associated with the species s. G, and H}, are the Rosen-

bluth potentials associated with the species b and are defined as
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The computation of the Rosenbluth potentials requires to know the distribution function of
the species b which is numerically challenging. We make the assumption that the distribution

function can be approximated by:
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where Fjy;, is an unshifted Maxwellian, s;, = % and vy, = \/% is thermal speed of the species
b, V|, s its mean parallel velocity and g ;, its mean parallel heat flux. This expansion is consitent
with the neoclassical theory. The Rosenbluth potentials can be computed analytically with this
approximated distribution function [3].

For simplicity, the drift kinetic limit is assumed, ensuring that the collision operator acts only
in the velocity space instead of the 5D phase space. This approximated collision operator has
been implemented in ORBS5 [2] by using the equivalence between a Fokker-Planck operator and

a Langevin equation.

Basic properties of the collision operator

A correction term has been implemented in the ORBS5 code in order to ensure that the colli-
sion operator conserves the density, the total momentum and total energy to machine precision
inside spatial bins. This correction term respects the velocity dependence of the collision oper-
ator to avoid an unphysical modification of the disctribution function. More details about this
correction term can be found in [1].

The collisional exchange of momentum (respectively energy) between species is shown on
Fig.1 (respectively Fig.2) and compared with theoretical predictions derived in [1]. An excellent

agreement is found in both cases. This is an important property of inter-species collisions.
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Figure 1: Exchange rate of momentum between Figure 2: Exchange rate of energy between

species species
Neoclassical benchmark

In this section, ORBS5 simulations are performed by keeping only axisymmetric components
of the electric potential, hence removing turbulence. An adiabatic electron response is assumed.
An adhoc MHD equilibria with circular concentric flux surfaces is used. The nonlinear col-
lision operator and its linearized counterpart are compared with theoretical predictions of the

neoclassical theory. As expected from neoclassical theory, the difference between the linear and
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nonlinear collision operators is small for these tests.

The neoclassical heat diffusivity x is

102 .

Chang-Hinton represented on Fig.3 as a function of
§ ORB5L

$ ORB5 NL the collisionality. A good agreement
is found with the theoretical predic-
=" tion given by Chang-Hinton [4] in
all collisonality regimes. Most of the
time the neoclassical heat flux is small
10 compared with the one induced by
102 1o 1(‘)0 o' turbulence. It can however become

v non negligible in certain cases, for in-

Figure 3: Comparison of the numerical heat diffusivity stance in transport barriers where tur-

obtained with the linear (black square) and the non-linear bulence is reduced. In this case, it is

(red circle) collision operator with the theoretical predic- then important to have the right level

tion of Chang—Hinton (blue curve). of neoclassical heat transport.
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and the Pfirsch-Schliiter regimes can

lead to an important shear of the neo- Figure 4: Comparison of the numerical &, obtained with

classical poloidal rotation. This shear the linear (black square) and the non-linear (red circle)

has been proposed to be a key element collision operator with the theoretical prediction of Kim

in the L-H transition [8]. (green curve), Sauter (magenta curve) and Shaing (blue

curve).
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Figure 5: Collisional damping of ¢ in presence of colli-

sion and comparison with a theoretical prediction [9].
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Zonal flows play a major in the satura-
tion of turbulence. Hence it is critical
to verify that the collisionnal damping
of zonal flows is correct. Fig.5 shows
the time evolution of the zonal com-
ponent of the electric potential in pres-
ence of collision. A good agreement is
found with the theoretical prediction
of Hinton and Rosenbluth [9]. The os-
cillations of the potential in ORBS on
Fig.5 correspond to geodesic acoustic
modes which have not been included

in the theoretical prediction.

An approximated nonlinear multi-species collision operator has been derived in the drift ki-

netic limit [1] and implemented in the global gyrokinetic code ORBS5 [2]. The conservation

properties of the collision operator as well as the proper exchange rates of momentum and en-

ergy between species are retrieved with this collision operator. The collision operator has been

benchmarked successfully against neoclassical theory.
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