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PIC codes commonly use the following representation for the distribuion function

fh(zzz, t)dzzz = ∑
p

wpδ (xxx− xxxp(t))δ (vvv− vvvp(t))dzzz. (1)

Here, and throughout, the notation zzz=(xxx,vvv) rerefs to phase-space coordinates. For convenience,

we also group the variables together into spatial positions XXX = {xxxp}p, velocities VVV = {vvvp}p, and

marker weights W = {wp}p. Ideally, an implementation of Coulomb collisions in a PIC code

should preserve the discrete versions of the kinetic momentum and energy, namely

PPP(XXX ,VVV ;W ) = ∑
p

wpmvvvp, (2)

K(XXX ,VVV ;W ) = ∑
p

wp
m
2
|vvvp|2. (3)

Additionally, the collisions should dissipate entropy.

Evaluating the standard entropy expression with respect to the distribution (1), however, is

not generally possible, and an approximation of some level must be introduced. Carrillo et al.

[1] introduced the idea of using a regularized entropy, where the distribution is smoothed out

with a radial basis function ψε and the entropy replaced by an expression such as

Sε [XXX ,VVV ;W ] =−
∫

∑
p

wpψε(zzz− zzzp) ln

(
∑
p′

wp′ψε(zzz− zzzp′)

)
dzzz. (4)

This realization enabled a construction of a deterministic marker-particle integrator for Coulomb

collisions. While the integrator presented in [1] preserves the kinetic momentum, it does not

preserve the kinetic energy.

To fix the missing energy conservation, I have proposed in [2] the following collisional single-

species particle-update scheme which can be generalized to multiple species

vvvn+1
p − vvvn

p

∆t
=

ν

m ∑
p̄

wp̄1(p, p̄)Q(vvvn+1/2
p − vvvn+1/2

p̄ ) ·ΓΓΓ(Sn
ε , p, p̄). (5)

Here ν = 2πe2 lnΛ is the collisional coefficient, the midpoint velocity is defined according

to vvvn+1/2
p = (vvvn+1

p + vvvn
p)/2, and the notation An = A(XXX ,VVV n;W ) refers to the function A being
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evaluated with respect to vvvn
p. The indicator function 1(p, p̄) is either one or zero depending

on whether the coordinates xxx of particles p and p̄ are within the same spatial collision cell or

not. The matrix Q(ξξξ ) is the expression familiar from the Landau collision operator, a scaled

projection onto a plane perpendicular to ξξξ

Q(ξξξ ) =
1
|ξξξ |

(
I− ξξξ ξξξ

|ξξξ |2

)
, (6)

with I the identity matrix in three dimensions. The vector ΓΓΓ(A, p, p̄) is defined as

ΓΓΓ(A, p, p̄) =
1

mwp

∂A
∂vvvp
− 1

mwp̄

∂A
∂vvv p̄

. (7)

For a detailed description of the derivation of this scheme, the reader should consult [2].

This new scheme will conserve the kinetic energy for

Kn+1−Kn

∆t
= ∑

p
wpmvvvn+1/2

p ·
vvvn+1

p − vvvn
p

∆t

= ν ∑
p,p̄

wpwp̄1(p, p̄)vvvn+1/2
p ·Q(vvvn+1/2

p − vvvn+1/2
p̄ ) ·ΓΓΓ(Sn

ε , p, p̄)

=
ν

2 ∑
p,p̄

wpwp̄1(p, p̄)(vvvn+1/2
p − vvvn+1/2

p̄ ) ·Q(vvvn+1/2
p − vvvn+1/2

p̄ ) ·ΓΓΓ(Sn
ε , p, p̄)

= 0, (8)

owing the the projection property of the matrix Q and the antisymmetry of the vector ΓΓΓ. The

scheme also preserves the discrete-time kinetic momentum for

PPPn+1−PPPn

∆t
= ∑

p
wpm

vvvn+1
p − vvvn

p

∆t

= ν ∑
p,p̄

wpwp̄1(p, p̄)I ·Q(vvvn+1/2
p − vvvn+1/2

p̄ ) ·ΓΓΓ(Sn
ε , p, p̄)

=
ν

2 ∑
p,p̄

wpwp̄1(p, p̄)(I− I) ·Q(vvvn+1/2
p − vvvn+1/2

p̄ ) ·ΓΓΓ(Sn
ε , p, p̄)

= 0. (9)

The simple integrator does not guarantee a strict algebraic dissipation of entropy. This can

be obtained, though, with a so-called discrete gradient integrator. Similarly, with the help of

discrete gradients, an energy and density conserving and entropy dissipating marker-particle

discretization of the electrostatic gyrokinetic Landau collision operator is possible. Due to space

contraints, these are not discussed in the current exposition. Instead, the reader is directed to [2]

for details.

To back up the claims regarding the momentum and energy conservation, an example simu-

lating the collisional relaxation of a double-Maxwellian distribution function in a reduced 2-D
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setting is provided. Essentially, the demonstration will be a replication of the example 3 de-

scribed in Sec. 4.3 of Ref. [1] but with a different algorithm.

The physical parameters, m, ν , as well as the integral of the distribution over the dimension-

less velocity space, are set to one. The initial state for the distribution is chosen as

f (vvv, t = 0) =
1

4π

[
exp
(
−(vvv−uuu1)

2

2

)
+ exp

(
−(vvv−uuu2)

2

2

)]
, (10)

where the peaks of the Maxwellians are uuu1 = (−2,1) and uuu2 = (0,−1). The energy and mo-

mentum of this distribution are E = 2.5 and PPP = (−1,0) respectively. The radial basis function

ψε is chosen to be the Gaussian

ψε(vvv) =
1

2πε
exp
(
−|v

vv|2

2ε

)
, (11)

with ε = 0.64h1.98, the parameter h = 2L/
√

N, L = 10, and the total particle number N = 602 =

3600. The particles are initialized in a regular grid in the domain [−L,L]× [−L,L] and the

weights adjusted to match the initial distribution. The discrete entropy functional is computed

with a 2-D Gauss-Hermite quadrature, localizing a 6-by-6 mesh of quadrature points to the

velocity position of each particle.

In this demonstration, I will push the particles with the scheme (5) using a time step of

∆t = 1/16. The resulting nonlinear system is solved using fixed-point iteration with the tol-

erance for the iteration set to 1E-15. The program for the demonstration has been written in

Python, parallelized with CUDA via use of the Numba package, and the simulations have been

performed on a single NVIDIA Quaddro K2200 GPU card. The source code for the implemen-

tation is available upon request from the author. The collisional evolution of the distribution

function according to the chosen implicit particle push is illustrated in Fig. 1 by evaluating

ψε ∗ fh on a regular mesh in the domain [−L,L]× [−L,L]. The panels indicate the time steps

#(1,10,30,60,120,200) from left to right and top down. The corresponding values for the kinetic

momentum and energy are recorded in Table 1 demonstrating the conservation laws.
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Figure 1: Collisional relaxation of a double Maxwellian (10). The panels describe snapshots

of the steps #(1,10,30,60,120,200) from left to right and top down. The axes in the panels

refer to the velocity coordinates (v1,v2) in the domain [−L,L]× [−L,L] and the color indicates

the level sets of the distribution function from zero (deep blue) to the instantaneous maximum

values (bright yellow) for optimal visual contrast.

Step # P1 P2 E

1 -0.9999999999999982 -1.8617208789871285E-16 2.499999999999991

10 -0.9999999999999984 -4.263625043299246E-16 2.4999999999999907

30 -0.9999999999999981 -1.4125799054770516E-16 2.500000000000011

60 -0.9999999999999984 -1.2262462096082616E-15 2.5000000000000293

120 -0.9999999999999974 4.1795993749316196E-17 2.500000000000039

200 -0.9999999999999982 -4.68985202235761E-16 2.500000000000042

Table 1: Conservation of momentum and energy during the collisional relaxation of a double

Maxwellian. The step numbers correspond to the panels in Fig.1.
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