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Abstract

Investigation of the laser-produced plasmas via hydrodynamic simulations belongs among
popular tools allowing to design experimental setups with optimal parameters. Interpreta-
tion of complex processes which cannot be observed directly during experiments represents
another field of application. Here, we present the application of the Arbitrary Lagrangian-
Eulerian (ALE) framework in the context of laser-plasma simulations, which employs a
computational mesh moving in a Lagrangian manner, i.e. naturally following the flow of the
generated plasma. On the other hand, robustness of this approach under extreme conditions
of laser/target interaction is guaranteed by a regular mesh improving mechanism followed
by an accurate interpolation technique. In realistic simulations, additional physical models
must be incorporated, such as accurate laser absorption, heat conductivity model, realistic
equation of state, etc. In particular, we are mainly interested here in development of a mag-
netic field model in the context of full ALE algorithm, enabling to perform estimates of

self-generated magnetic fields, when plasma density and temperature are not colinear.

Introduction

Many quantities of the laser produced plasma cannot be simply measured during experimen-
tal investigation, which makes the numerical simulations unavoidable for experiment interpre-
tation and detailed insight into the processes during the interaction.

Two basic frameworks can be used in hydrodynamic simulations — Eulerian and Lagrangian.
The classical Eulerian approach employs a static computational mesh, while a mesh moving
with the fluid is used in the Lagrangian approach, making it well-suited for problems involving
strong compressions or expansions typically present in laser/target simulations. However, the
motion of the mesh can result in its degeneration in certain situations. For this reason, the
arbitrary Lagrangian-Eulerian (ALE) method [1] has been developed, continuously improving
the mesh by a rezoning method followed by a remapping step, transferring all fluid quantities

conservatively to the rezoned mesh.
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The 2D cylindrical Prague ALE (PALE) code [2] has been developed, incorporating the ALE
algorithm with all necessary physics models (equations of state, models for heat conductivity,
laser absorption, two-temperature fluid, etc). This code is used for simulations of a wide variety
of problems, see for examples [3], [4], or [5]. Recently, the proposed model of spontaneously-
generated magnetic fields based on the Biermann term discretization has been added, allowing

to estimate the magnetic field distribution and magnitude in the interaction region.

Hydrodynamic Model
In the PALE code, we employ the compatible mimetic method [6] in the staggered discretiza-

tion. The following set of Euler equations in the Lagrangian formulation is solved,
ll)fl_f:_w, p U= Vp pLE =y (kY1) VT,

where the thermodynamic quantities (density p, pressure p, and specific internal energy €) are
located in the cell centers, and the fluid velocity w at the mesh nodes. The last two terms in the
energy equation represent the heat exchange due to thermal conductivity and laser absorption,
where T stands for fluid temperature, k is the heat conductivity coefficient, and I represents
the Poynting vector. For mesh rezoning, we employ the Winslow smoothing, followed by an
approximate remapper with a posteriori repair [7] in the mesh sub-zones [8].

To approximate the source term representing absorption of the laser beam energy, the wave-
based self-consistent model employing stationary solution of Maxwell equations [9] is em-
ployed. The parabolic heat-conductivity term is separated by the splitting technique [10] and
solved by the mimetic support operators [11], while using the Spitzer-Harm x coefficient and
heat flux limiting. The QEOS equation of state [12] consistently interpolated by the HerEOS li-
brary [13] is used here. To approximate real laser geometry and avoid expensive 3D calculation,
the axisymmetric r — z cylindrical geometry is used.

The magnetic field generation is described by the Biermann battery term,

i—f :—Vxﬁ:—%V(ﬂ%) %V pe,

where n, is electron density and p, electron pressure. The constants of electron charge e and
speed of light ¢ convert the generated field to the Gaussian units. Only the angular field compo-
nent B = (0,0,By) is considered here in the  — z geometry. The derivatives of electron pressure
and harmonic electron density are computed numerically using the least squares [14] approxi-
mation. In the remapping step of the ALE algorithm, By, is remapped in the form of magnetic

energy density by = IJLOBé' Its reconstruction, integration, and repair is done similarly as the

other cell-centered quantities, ensuring magnetic energy conservation to machine epsilon.
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Numerical Examples

To verify the magnetic field generation model, a crossed-gradients test inspired by [15] was

used. Density and electron temperature are set such that their gradients are perpendicular
p=1+0.1(cos(nr)+cos(m(l—z)), T, = 100+ 10 (cos(mr) +cos(mz)),

leading to magnetic field generation in the center of the (0,1)cm x (0,1)cm domain. In this

test, the hydrodynamic solver is disabled and only the magnetic field model is tested.
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Figure 1: Numerical profiles for the crossed-gradients test: mass density (left), temperature (central)

and generated magnetic field (right) on 40> mesh at t = 200ns.

In Fig. 1, profiles of density, temperature, and gener- n| L order

10 | 8.19-1072

20| 2.20-107% 1.89
40 | 5.60-1073 1.97
80 [ 1.41-1073 1.99
160 | 3.53-107* 1.99
320 [ 1.03-107% 1.78

ated magnetic field at = 200ns on a 40 mesh are shown.
The same test was run on a sequence of meshes in dif-
ferent resolutions. The analytic solution has been con-
structed and L; errors of the numerical values from the
analytic ones have been computed, the results are pre-

sented in Tab. 1. The second order of convergence can be

observed, and the model converges to the analytic profile.

Table 1: L d ord -
To demonstrate compatibility of the magnetic field 1 errors and orders of con

) ) . vergence of By att = 200ns on meshes
model with the staggered ALE algorithm, a full test moti-

with different resolutions.
vated by experiments at the PALS laser facility involving
all available physics has been designed. A 500J Gaussian pulse at 438nm with spot radius
100 um and FWHM length 400ps irradiates a 20 um thick Al foil, generates a shock wave
melting and evaporating the material and producing plasma corona. The generated magnetic
field at the time of pulse maximum in shown in Fig. 2. We can see a positive field behind the

shown wave as well as a negative field in the low-density plasma. A relatively good agreement

with the By magnitude scaling law from [16] has been observed.
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Figure 2: Generated magnetic field B, [G) profile for the full test on 100* mesh at pulse maximum.
Conclusions

The development of a magnetic field model and its integration to the PALE hydrodynamic
code has been described and its validity demonstrated on typical realistic tests. In the near
future, we plan to investigate the validity of the model in realistic simulations and extend it by
incorporating the magnetic diffusion model. At the same time, a more advanced model based

on curvilinear FEM discretization is being developed, for a preliminary report, see [17].
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