
Experimental investigation of SOL and divertor plasma properties for vertical and horizontal outer target geometries during L-mode discharges in the KSTAR tokamak

Jun Gyo Bak¹, Heung Su Kim¹, Richard Pitts², Hyung Ho Lee¹, and KSTAR team¹

¹ Korea Institute of Fusion Energy (KFE), Daejeon, Korea

² ITER Organization, St. Paul Lez Cedex, France

The properties of the scrape off layer (SOL) and divertor plasmas in the range of $n_e/n_G = 0.17 \sim 0.34$, where n_e and n_G are plasma and Greenwald densities, respectively, were experimentally investigated for vertical and horizontal target geometries under a lower single null (LSN) configuration during L-mode discharges in the KSTAR tokamak. The value of n_G was calculated by using $n_G [10^{20} \text{ m}^{-3}] = I_p [\text{MA}] / \{\pi(a[\text{m}])^2\}$ where I_p and a are plasma current and minor radius, respectively. Thus, n_G was $\sim 8.0 \times 10^{19} \text{ m}^{-3}$ for the experimental conditions such as $I_p = 0.6 \text{ MA}$ and $a = 0.5 \text{ m}$. The value of n_e was changed by adjusting an amount of D_2 gas fueling at a certain common flux region between the outboard mid-plane (OMP) and the divertor which correspond to upstream and downstream regions, respectively. Fig. 1 shows probe diagnostics and $D\alpha$ channels used for comparing SOL properties for the two target geometries plasma shapes.

Firstly, it is found that while the intensity of the $D\alpha$ line emission $I_{D\alpha}$ in the lower divertor region (one channel in poloidal array) for the horizontal target (HT) is up to ~ 4 times higher than one for the vertical target (VT), the value of $I_{D\alpha}$ in the OMP region (one channel in toroidal array) for the HT is less than 1.5 times one for the VT as seen in Fig. 2(a). Here, there is no clear difference between two n_e s in the two target geometries. Secondly, it is observed that the radial profile of the ion saturation current density J_{sat} obtained by using the FRPA at the OMP becomes clearly broader when n_e is higher than $2.31 \times 10^{19} \text{ m}^{-3}$ ($= 0.28 n_G$) in the HT as shown in Fig. 2(b). In addition, the Mach number, which represents the parallel flow velocity, in the near-SOL region also becomes clearly small (from ~ 0.65 to ~ 0.2 at $R = 2.255 \text{ m}$) for higher n_e in the HT. Thus, the shoulder formation in the far-SOL region can be expected from broader profile of J_{sat} and lower Mach number at higher n_e in the HT geometry. However, the shoulder formation is not clearly seen in the VT, which is quite similar to the result from the JET tokamak [3].

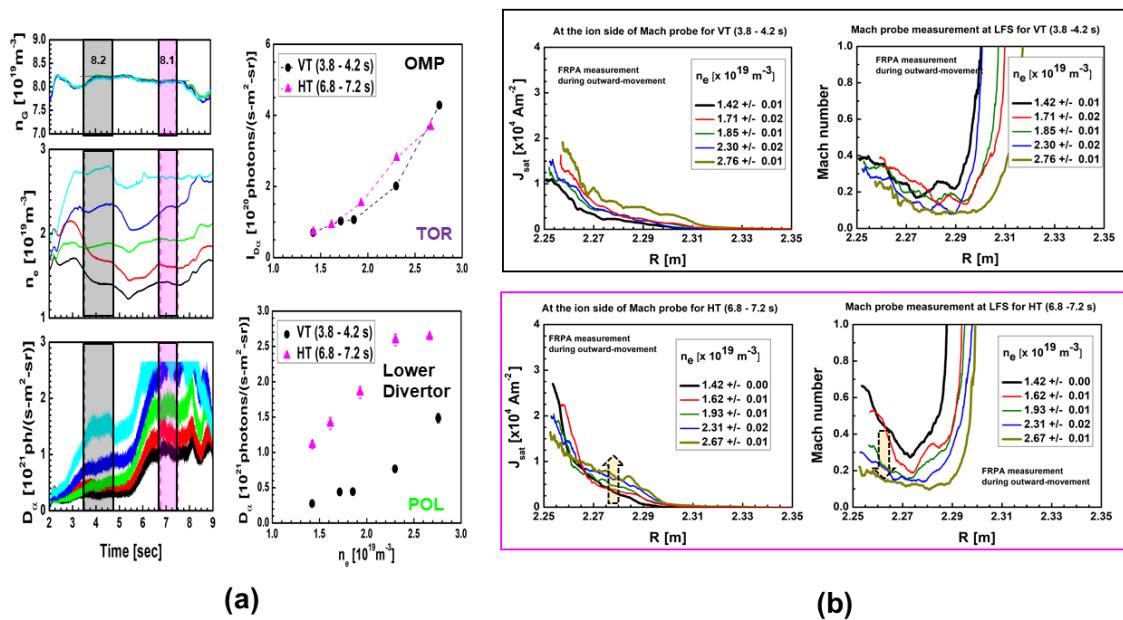


Fig. 2. (a) Time evolutions of n_G , n_e and the intensity of $D\alpha$ line (one channel in poloidal array), and the intensities of two $D\alpha$ lines in toroidal and poloidal arrays versus n_e under the VT and HT geometries for several n_e s. (b) Radial profiles of J_{sat} and Mach number at the OMP for the two target geometries.

Thirdly, it is found that the magnitude of the electrostatic fluctuation δJ_{sat} in the far-SOL region increases from $\sim 0.07 \times 10^5 \text{ A/m}^2$ to $\sim 0.12 \times 10^5 \text{ A/m}^2$ for $n_e/n_G = 0.17 \sim 0.34$ in the HT even though $(\delta J_{sat}/J_{sat})$, as the relative value, is almost constant (~ 0.25) as shown in Fig. 3(a). For the VT case, the value of δJ_{sat} in the near-SOL region becomes larger for higher n_e such that $(\delta J_{sat}/J_{sat})$ increases from ~ 0.15 to ~ 0.26 . The value of δJ_{sat} in the far-SOL region is quite smaller

than one in near-SOL region for the VT case, comparing to the HT case. Fourthly, it is observed that the magnitude of the magnetic fluctuation dB_0/dt near the OMP region corresponding to the low field side (LFS) also increases from ~ 0.6 T/s to ~ 1.2 T/s in the range of n_e/n_G in the HT as seen in Fig. 3(b). However, there is no clear changes in the magnitude of dB_0/dt at the LFS ($dB_0/dt = \sim 0.4$ T/s) due to the increase of n_e in the VT case. In addition, the magnitude of dB_0/dt near the inboard mid-plane region corresponding to the high field side (HFS) does not clearly depend upon the value of n_e in the two target geometries even though the magnitude itself ($dB_0/dt = 0.75 - 0.9$ T/s) in the HT usually is higher than one ($dB_0/dt = 0.5 - 0.6$ T/s) in the VT.

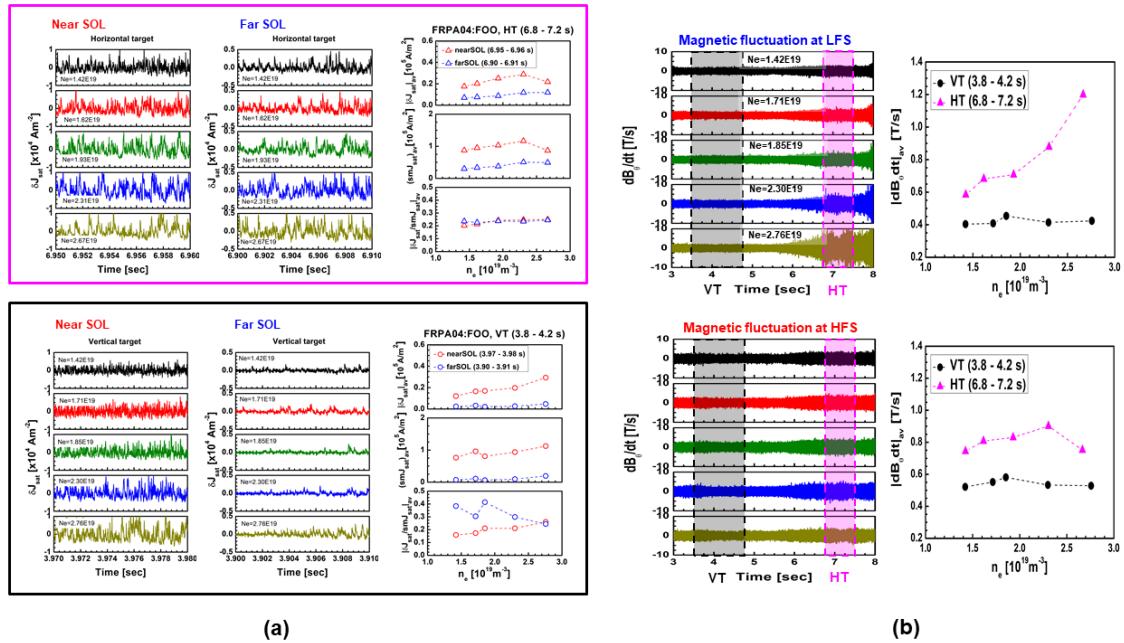


Fig. 3. (a) Time evolutions of electrostatic fluctuations at the SOL region and three parameters versus n_e under the HT and VT geometries, and (b) Time evolutions of magnetic fluctuations at the low field side (LFS) and high field side (HFS) and magnetic fluctuations versus n_e under the two target geometries for several n_e s. Here, the range of n_e/n_G is $0.17 \sim 0.34$, and the three parameters are two averaged values such as $|\delta J_{sat}/av$ and (J_{sat}) , and relative value as $|\delta J_{sat}/av/(J_{sat})av$.

Fifthly, it is found that while the magnitudes of J_{sat} largely decrease at both inner strike point (ISP) and outer strike point (OSP) in the divertor region for $n_e/n_G > 0.25$ in the HT case, the value of J_{sat} drops at only the ISP for $n_e/n_G > 0.23$ in the VT as shown in Fig. 4(a). From the large decrease of J_{sat} above a certain level of n_e , it was thought that the particle flux was detached near the strike point. However, the detachment at the ISP occurred at lower n_e than the OSP was in opposite to the previous result [4]. The further study is needed in order to explain the conflicting results. Here, the maximum value of J_{sat} at the ISP is about 2 times higher than one at the OSP in the HT case, the maximum values of J_{sat} at both the ISP and the OSP are comparable each other in the VT case. Sixthly, it is observed that while the magnitude of δJ_{sat} near the OSP largely decreases for $n_e/n_G > 0.24$ in the HT such that $(\delta J_{sat}/J_{sat})$ decreases from

~0.12 to ~0.05, there is no drop in the value of δJ_{sat} in the range n_e in the VT as seen in Fig. 4(b). Even there is no dependence of $(\delta J_{\text{sat}}/J_{\text{sat}})$ upon n_e in the VT.

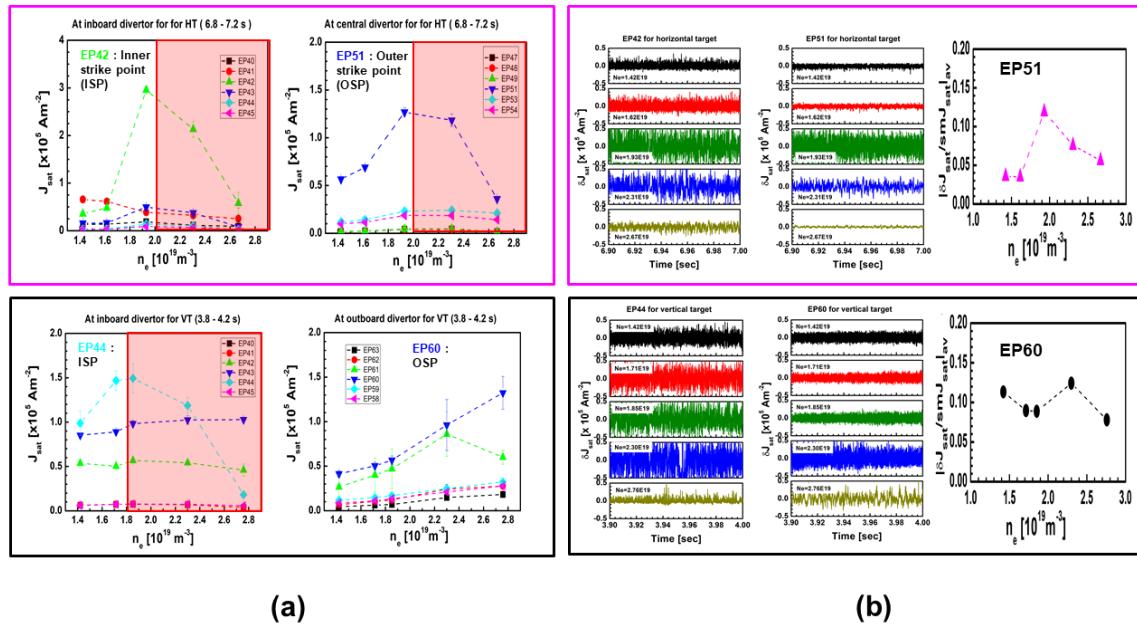


Fig. 4 (a) The value of J_{sat} versus n_e at the inner and outer divertor regions under HT and VT geometries, and (b) time evolutions of δJ_{sat} at the ISP and the OSP together with the value of $\delta J_{\text{sat}}/J_{\text{sat}}$ at the OSP versus n_e under the two target geometries.

In this work, the preliminary results from the experimental investigations on the SOL property, which were needed for the study of the particle transport in the SOL region was reported. The shoulder formation in the far-SOL region was clearly observed in the HT geometry. While the magnitude of δJ_{sat} (upstream) was relatively large for higher n_e at far-SOL region in the HT, it was relatively large for higher n_e near-SOL region in the VT. The magnitude of dB_θ/dt at the LFS clearly increased for higher n_e in the HT. While the magnitude of J_{sat} (downstream) largely decreased at both the ISP and the OSP above a certain value of n_e in the HT, and it largely decreased only at the ISP above a certain value of n_e in the VT. The magnitude of δJ_{sat} near the OSP was clearly dropped above a certain value of n_e in the HT.

This research was supported by the R&D Program of “KSTAR Experimental Collaboration and Fusion Plasma Research (EN2021-12)” through the Korea Institute of Fusion Energy (KFE) funded by the Government funds.

References

- [1] J.G. Bak *et al.*, Contrib. Plasma Phys. **53** (2013) 69.
- [2] H.S. Kim *et al.*, Fusion Eng. Des., **109** (2016) 809.
- [3] A. Wynn *et al.*, Nucl. Fusion, **58** (2018) 056001.
- [4] J.S. Park *et al.*, Nucl. Fusion, **59** (2019) 126033.