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Introduction

The Divertor Tokamak Test facility (DTT) [1, 2] is a new D-shaped superconducting tokamak
under construction in Italy, with the first plasma planned for 2026. It will be equipped with 3
auxiliary heating systems: a 170 GHz ECRH system, a 60 —90 MHz ICRH system, and a neg-
ative ion NBI system. The primary task of DTT (Ry = 2.19m, a =0.70m, pulse length < 100s,
Br < 6T, I; < 5.5MA, Pyep /R ~15) is to study the controlled power

and particle exhaust from a fusion reactor, which is a main research
topic in the European Fusion Roadmap [3], and test alternative exhaust
strategies.

An intensive integrated modelling work of DTT operational scenar-

ios with the Single Null (SN) divertor configuration (Fig.1) is under-

way, in order to support the machine design, and particularly the defi-
nition of the heating mix, the design of the neutron shields, the assess-
ment of fast particle losses and the design of diagnostic systems, as  Figure 1: Plasma shape

well as to help the elaboration of a DTT scientific work-programme.  of the SN DTT scenario.

Integrated modelling set-up
Simulations of the main operational scenarios in H-mode were performed using first-principle
based transport models and state-of-art modules for heating, fuelling and magnetic equilibrium,

and are described in detail in [4]. So far, the Full Power (FP), Day-1, and Day-0 scenarios have
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been simulated, using the JINTRAC[S5] suite of codes or the ASTRA[6] transport solver with
a mixed ASTRA—JINTRAC approach. These simulations predict steady-state radial profiles of
electron and ion temperature, density, current density, rotation, power depositions, and impuri-
ties (Ar and W) in pyor < 0.94.

The pedestal was calculated by EPED1[7]. The turbulent heat and particle transport is calcu-
lated by the Trapped-Gyro-Landau-Fluid (TGLF)[8] or QuaLiKiz (QLK)[9] quasi-linear trans-
port models. Particularly, TGLF SAT1-geo (released in Nov.2019) and TGLF SAT?2 (released in
Jan.2021)[10] have been compared to the new QLK release 2.8.1[11] and an “ad hoc” QLK ver-
sion (specifically developed for DTT to match gyrokinetic predictions in TEM dominant condi-

tions). The results of the modelling performed with the previous device design with Ry =2.14m

—— QLK standard
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and a =0.65m will be presented and discussed. 20+ ;
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appears a bit overestimated, but qualitatively nearer to

GENE predictions.
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To have a reference g95 > 3, the device has been en-

larged to Ry =2.19m and @ =0.70m. The updating to the Figure 2: FP reference scenario profiles.
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new DTT size of the modelling work is underway. Globally, the Ohmic power Popm ~1.1MW is
quite negligible, the core radiated power P.,q ~15—18MW is about the 35% of the total power,
and a large amount of power (P,q ~14—15MW) is exchanged from electrons to ions because of
the collisional coupling. Some impurity penetrations into the core is observed with both models.
In the FP reference scenario, the energy fraction owned by the energetic particles due to both
NBI and ICRH systems amounts to Wgp /Wt = 6.5 — 7.7%.

The neutron rate resulted <1.5x10'7/s, i.e. compatible with the present design of neutron shields.

Fuelling issues

S0 density
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w o N > o o«

To investigate the edge neutral level re-

quired to operate in the FP scenario with-

out pellets, the standard QLK run has been

s'm3x10"9

NB particle source

extended up to the separatrix, including

an edge transport barrier tuned to repro- e e

*4 normatised o, °
duce the previous pedestal. Since the neu-

tral density rate, shown in Fig.3, is signif- Figure 3: Profiles of neutral sources in the FP case.
icant up to Por ~0.8, the neutral penetration into the plasma evaluated by FRANTIC[12] is
adequate for fuelling. The NBI contribution to the neutral source is small. To reach the required
density value at the top of barrier, we need at the separatrix a neutral flux level of ~ 0.36x10%2
particles/s, which corresponds to a D fuelling of ~5x10%/s. Being near to the feasibility limit,

a pellet injection system is deemed useful as a fuelling method in DTT to avoid degrading the

edge plasma with extremely high gas puff rates and to minimise the operational risk.
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400keV. According to both TGLF

and QLK, 7; values are similar in Figure 4: Radial profiles for the Day-1 phase.

Day-1 and FP scenarios, due to the high ion stiffness, while the n, peaking is less pronounced

in Day-1 than in the FP case. Some discrepancies in the 7, and 7; profiles appear between the
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two models. We notice that 7, is significantly reduced in the Day-1 TGLF run with respect to
the FP profile.

Day-0 scenario

The day-0 phase (with By =3T and I,; =2.0MA), i.e. the first experimental plasma, fea-
tures only 8 MW of ECH power in second harmonic X-mode to maximise the absorption.

Since the day-0 scenario is a purely
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ing and low density, 7, is much larger T romateedn
than T; (T,, ~ 12 keV and T;, ~ 4
keV) Figure 5: Radial profiles for the Day-0 phase.
Conclusions

Integrated steady-state simulations of the main DTT scenarios are now available. The ma-
chine size has been increased, the heating mix has been defined, neutron shields have been

confirmed, and a pellet injection system is deemed useful as a fuelling method in DTT.
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