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Plasma turbulence plays a key role in determining the spatial-temporal evolution of plasmas
in astrophysical, geophysical and laboratory contexts. In particular, turbulence on disparate
spatial and temporal scales limits the level of confinement achievable in magnetic
confinement fusion experiments and therefore limits the viability of sustainable fusion power.
MAST-U is a well-equipped experimental facility having instruments to measure ion-scale
turbulence and electron scale turbulence at the plasma edge. However, measurement of
turbulence at electron scales in the core is problematic, especially in H mode. This gap in
measurement capability has provided the motivation to develop a high-k microwave
scattering diagnostic for MAST-U*. The turbulence is expected to be most significant in the
binormal direction with scale ranges expected of order (kL pe ~ 0.1 -=> 0.5) in the confinement
region of the core plasma (0.5 < r/a < 1). We therefore propose a binormal high-k scattering
diagnostic operating with near-perpendicular incidence to the magnetic field through the

scattering region.

In this paper, the results of Gaussian wave optics and beam-tracing calculations [1] are
presented that demonstrate the predicted spatial and wavenumber resolution of the diagnostic
along with the sensitivity of the measurement, assuming a probe beam crossing close to the
diameter of the MAST-U vessel in the equatorial mid-plane. The analysis considers the
variation of magnetic pitch angle (= tan™' (Bo / By)) as a function of plasma radius and its
effect on the instrument selectivity function F(r) as a function of scattering location and kipe.
An illustration of the proposed scattering geometry with respect to the MAST-U cross-

sectional schematic is given in figure 1.
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Figure 1: Proposed high-k scattering geometry on MAST-U experimental schematic.

The system we propose will operate in the collective scattering regime governed by the Bragg
condition at a frequency close to 260GHz to maintain adequate k1p. resolution over the range
of interest whilst minimising beam refraction and maximising the detected signal to noise
ratio. We propose the use of a compact 50mW solid-state mm-wave source (vacuum tube
upgradable) coupled with a detector noise bandwidth of ~15MHz and noise temperature of
~1000K. After a detailed consideration of the MAST-U port allocation maps and the precise
internal positioning of components, we here consider the option of injecting the mm-wave
Gaussian beam ‘optically’ via a 200mm diameter upper port, and using a combination of
planar and focussing mirrors to launch across the plasma from an inter-port mount on the
equatorial plane (see figure 1), with scattered beams either directly incident on one of the
600mm equatorial ports or (in preference) indirectly (via a collection mirror) in an inter-port
area. An example representation of the Gaussian beam-waist evolution from launch to
detection is presented in figure 2. For the proposed scattering radii, there is minimal variation
in the 1/e* beam waist w from ~ 3 cm. For the purpose of the localisation and sensitivity

calculations that follow we have therefore assumed a 3 cm 1/e? beam waist.

We conducted beam-tracing calculations of the primary and scattered rays for a representative
high-beta MAST-U equilibrium (results presented in figure 3). These were computed for 3
scattering coordinates of 1.0 m, 1.14 m and 1.24 m in major radius. In each case, we defined 4
equally spaced scattered beams up to a maximum scattering angle limited by the upper

poloidal field coil P5.
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Gaussian beam 1/e? radial evolution for MAST-U optical system simulated using ray transfer (ABCD) matrix method.
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Figure 2: Example ABCD matrix calculation of Gaussian beam waist evolution for the

proposed scattering geometry.

For a position mid-range between the magnetic axis and the pedestal (Rscax = 1.14m) this
gives a maximum measurable kipe of ~0.38. The scattered beam traces account for the
variation in magnetic field pitch factor as a function of scattering radius, resulting in different
angles of the scattered beamlets (with respect to the equatorial plane) for each of the three

scattering coordinates.
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Figure 3: MAST-U high-beta beam tracing results for binormal scattering at R, = 1.0 m,
1.14 m and 1.24 m.
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Using the ki data for each of the scattered components from the beam tracing simulations, we
conducted an analysis of the instrument selectivity function accounting for the variation of
magnetic field pitch angle « as a function of radius through the scattering coordinates. The
analysis we conducted is similar to that presented by Mazzucato et al. [2, 3], and Devynck et
al. [4] where it was observed that for near perpendicular incidence of the primary ray to the
magnetostatic field, a strong variation in magnetic pitch factor with radius served to enhance
measurement localisation.

Localisation (dr) and Sensitivity of measurement (Pr../Pnoise)
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Figure 4: (a) Localisation dr vs kipe and associated sensitivity of measurement

(b) Prec / Pnoise fOI‘ Rscatt = I.Om, 1 14m and 1.24m.

Looking at the variation of dr with kip. in figure 4, there is a clear downwards trend moving
towards higher k1p. dropping to a minimum of ~0.033m for Rsca = 1.14m and 1.24m (krpe =
0.38 and 0.50 respectively). Correspondingly, there is a drop in the signal to noise ratio SNR
= Prec / Prnoise to @ minimum of ~ 20 for Rscart = 1.14 m and 1.24 m. This can be improved

further via upgrade of the transmitted power using a vacuum tube source.
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