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Introduction

When dealing with the description of a plasma through the Vlasov-Maxwell-Landau system,

both gyrokinetic and guiding-center theory are often applied to investigate solely the Vlasov-

Maxwell part and the collision operator is either neglected or heavily approximated. This is in

part because the dissipationless dynamics may be addressed with systematic reduction tech-

niques via the Lie-transform perturbation theory (see e.g. [1]) but the dissipative part of the

problem tends to lead to difficult truncation problems in trying to ensure that the effects of col-

lisions do not violate, e.g., the laws of thermodynamics. Nevertheless, the modern formulation

of collisional electrostatic gyrokinetics exhibits a metriplectic structure [2], an extension of the

Poisson bracket formalism of classical mechanics to dissipative systems that obey the laws of

thermodynamics (see e.g. [3, 4]). This observation prompts the question of whether some as-

of-yet undiscovered metriplectic perturbation theory exists. The current work provides another

indication of the possible existence of such theory and sheds further light into the issues of

developing a collision operator for electromagnetic reduced plasma theories.

Metric bracket for collisions

The Landau operator, describing the effects due to small-angle Coulomb collisions between

the species s and s̄, can be expressed as

Css̄( fs, fs̄) =−∑
s̄

νss̄

ms

∂

∂vvv
·
∫

δ (xxx− x̄xx) fs(zzz) fs̄(z̄zz)Q(vvv− v̄vv) ·ΓΓΓss̄(S ,zzz, z̄zz)dz̄zz. (1)

The coordinates zzz = (xxx,vvv) and z̄zz = (x̄xx, v̄vv) refer to different phase-space locations, the vector

ΓΓΓss̄(A ,zzz, z̄zz) = 1
ms

∂

∂vvv
δA
δ fs

(zzz)− 1
ms̄

∂

∂ v̄vv
δA
δ fs̄

(z̄zz) and Q(ξξξ ) =
(
I−ξξξ ξξξ/|ξξξ |2

)
1/|ξξξ | is the familiar scaled

projection matrix. We can express the weak form of (1) as

∑
s

∫
gs(zzz)Css̄( fs, fs̄)dzzz = ∑

ss̄

1
2

∫∫
ΓΓΓss̄(G ,zzz, z̄zz) ·Wss̄(zzz, z̄zz) ·ΓΓΓss̄(S ,zzz, z̄zz)dz̄zzdzzz, (2)

where G =
∫

gs(zzz) fs(zzz)dzzz is a functional and Wss̄(zzz, z̄zz) = νss̄δ (xxx− x̄xx) fs(zzz) fs̄(z̄zz)Q(vvv− v̄vv) is a

positive semi-definite matrix. One could view gs(zzz) as a test function.
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This rather peculiar form enables a straightforward identification of a functional bracket

(A ,B) = ∑
s,s̄

1
2

∫∫
ΓΓΓss̄(A ,zzz, z̄zz) ·Wss̄(zzz, z̄zz) ·ΓΓΓss̄(B,zzz, z̄zz)dz̄zzdzzz, (3)

in terms of which collisional evolution of arbitrary functionals can be generalized to the func-

tional differential equation dA
dt

∣∣∣
coll

= (A ,S ). The bracket (3) has the kinetic energy K =

∑s
∫

fs(zzz, t)ms|vvv|2/2dzzz, the momentum P =∑s
∫

fs(zzz, t)msvvvdzzz, and the mass Ms =
∫

ms fs(zzz, t)dzzz

functionals as invariants as a result of the conditions

ΓΓΓss̄(Ms,zzz, z̄zz) = 0, δ (xxx− x̄xx)ΓΓΓss̄(P,zzz, z̄zz) = 0, ΓΓΓss̄(K ,zzz, z̄zz) ·Wss̄(zzz, z̄zz) = 0. (4)

The convenience of the bracket formulation is that it brings the collisional evolution on equal

footing with the infinite-dimensional Hamiltonian formulation of the dissipationless Vlasov-

Maxwell part [5] and formulates the kinetic system as whole in terms of the so-called metriplec-

tic dynamics of arbitrary functionals [3, 4].

Collisional bracket for the guiding-center Vlasov-Maxwell system

The guiding-center Vlasov-Maxwell system has a variational structure and conserved quan-

tities that can be identified via analysis of the system’s Noether symmetries [6]. The global

invariants are the total energy and momentum functionals

H gc[F,EEE,BBB] = ∑
s

∫
KsFsdZZZgc

s +
1

8π

∫ (
|EEE|2 + |BBB|2

)
dxxx, (5)

Pgc[F,EEE,BBB] = ∑
s

∫
msv‖bbbFsdZZZgc

s +
1

4πc

∫
EEE×BBBdxxx, (6)

with K = 1
2mv2

‖+µB being the individual guiding-center kinetic energy. The perturbation the-

ory compatible with preserving Hamiltonian structures primarily operates at the level of the

Lagrangian and not the Poisson structure. While this arrangement guarantees that truncations

introduced to the perturbed Lagrangian facilitate a Poisson structure that satisfies the Jacobi

identity, it does not instruct us on how to transform general brackets and functional derivatives:

the truncation problem in applying the Lie-transformation perturbation theory to the Poisson

structure still persists [7]. The alternative way to an appropriate collisional bracket is to look for

a structure similar to (3) and to appropriately modify parts of it while simultaneously juggling

with the conserved quantities. This results in a bracket

(A ,B)gc = ∑
s,s̄

1
2

∫∫
ΓΓΓ

gc
ss̄ (A ,ZZZ, Z̄ZZ) ·Wgc

ss̄ (ZZZ, Z̄ZZ) ·ΓΓΓ
gc
ss̄ (B,ZZZ, Z̄ZZ)dZ̄ZZgc

s̄ dZZZgc
s , (7)

where Wgc
ss̄ (ZZZ, Z̄ZZ) = νss̄δ (XXX− X̄XX)Fs(ZZZ)Fs̄(Z̄ZZ)Q(ΓΓΓ

gc
ss̄ (H

gc,ZZZ, Z̄ZZ)) and the vector ΓΓΓ
gc
ss̄ (A ,ZZZ, Z̄ZZ) is

ΓΓΓ
gc
ss̄ (A ,ZZZ, Z̄ZZ) =

(
bbb
m

∂

∂v‖
+

Ωbbb×ρρρ0
B

∂

∂ µ

)
δA

δF

∣∣∣
s,ZZZ
−

(
bbb
m

∂

∂v‖
+

Ωbbb×ρρρ0
B

∂

∂ µ

)
δA

δF

∣∣∣
s̄,Z̄ZZ

, (8)
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with Ω the cyclotron frequency and ρρρ0 the lowest order expression for the gyroradius. The first

part in (8) is to be evaluated at the position ZZZ with respect to the species s parameters and the

second part in a similar manner but at Z̄ZZ and with respect to species s̄.

The bracket has the total energy (5) and momentum (6) as invariants. As ΓΓΓ
gc
ss̄ (H

gc,ZZZ, Z̄ZZ)

belongs to the null space of Wgc
ss̄ (ZZZ, Z̄ZZ) it ensures (H gc,A )gc = 0 with respect to arbitrary

A . Further, the presence of δ (XXX − X̄XX) in Wgc
ss̄ ensures that (Pgc,A ) = 0. The choices of (8)

and Wgc
ss̄ (ZZZ, Z̄ZZ) together with the general expression for the bracket (7) now guarantee that if

the collisional evolution of functionals were to be given by dA
dt

∣∣∣
coll

= (A ,S )gc and driven by

the entropy, both the energy and momentum conservation would be satisfied and the entropy

dissipation would be guaranteed. While the structure of the collisional bracket (7) might appear

somewhat intimidating, parts of it can be handled analytically and the gyroangle dependency in

the bracket averaged in terms of the complete elliptic integrals.

The gyrokinetic problem

The collisional bracket for the guiding-center Vlasov-Maxwell-Landau system that we have

presented and analyzed is the first one of its kind for any temporally reduced electromagnetic

kinetic plasma model. Nevertheless there exists a collisional bracket for the electrostatic gyroki-

netic model [2]. This raises the question whether analogous brackets or energetically-consistent

collision operators for other reduced electromagnetic kinetic plasma theories exist.

The particle velocity can be represented in the reduced coordinates to a reasonable accuracy

as vvv = ẊXX + ρ̇ρρ0. Where ẊXX captures the parallel streaming and the slower drifts while ρ̇ρρ0 captures

the fast Larmor rotation. Further, we know that the velocity-space derivative of a particle phase-

space function f can be expressed in terms of the non-canonical particle phase-space Poisson

bracket. In the electrostatic case [2], the logical expression for the vector ΓΓΓ(A ) in the collisional

bracket is then

ΓΓΓ(A ) =

{
XXX +ρρρ0,

δA

δF

}
zzz
−
{

XXX +ρρρ0,
δA

δF

}
z̄zz
. (9)

In perturbed electromagnetic theories, such as the drift-kinetic and gyrokinetic ones, things are

different. The single drift-center or gyrocenter Lagrangian is presented as

L = ϑα żα −K(EEE1,BBB1)+(e/c)A1,iẊ i− eϕ1, (10)

with ϑα the six time-independent components of the unperturbed guiding-center one-form, K

the kinetic energy function, and (AAA1,ϕ1) and (BBB1,EEE1) the perturbed electromagnetic potentials

and fields respectively. In this case, the particle velocity in reduced coordinates becomes

vvv = {XXX +ρρρ0,K}−{XXX +ρρρ0,XXX} · eEEE1. (11)
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Following the drift-kinetic system documented in [8], where the canonical toroidal momentum

and energy functionals are conserved, one finds that

δPφ

δF
6= pφ ,

{
XXX +ρρρ0,

δH

δF

}
6= vvv, (12)

with pφ the single guiding-center canonical toroidal momentum. There does not appear to be

an immediate, simple way to modify (9) so that one would recover ΓΓΓ(H ) = vvv− v̄vv, where vvv

is given by (11), and ΓΓΓ(Pφ ) = {XXX +ρρρ0, pφ} which guarantee the conservation properties for

the electrostatic case. Based on our findings, we conclude that a systematic tool for performing

asymptotic dynamical reduction of collisional process, or more precisely of metric brackets, is

necessary. Although Lie-transform perturbation theory is an established tool to handle asymp-

totic dynamical reduction of dissipation-free dynamics, no similar compatible theory exists yet

to handle structure-preserving dissipative dynamics.

Acknowledgements

This work has been supported by the Academy of Finland grant nos. 316088 and 315278.

References

[1] T.S. Hahm, W.W. Lee, and A. Brizard. The Physics of fluids, 31(7):1940–1948, 1988.

[2] E. Hirvijoki and J.W. Burby. Physics of Plasmas, 27(8):082307, 2020.

[3] A.N. Kaufman. Physics Letters A, 100(8):419–422, 1984.

[4] P.J. Morrison. Physics Letters A, 100(8):423–427, 1984.

[5] A.Weinstein and P.J. Morrison. Physics Letters A, 86(4):235 – 236, 1981.

[6] A.J. Brizard and C. Tronci. Physics of Plasmas, 23(6):062107, 2016.

[7] A. J. Brizard, P. J. Morrison, J. W. Burby, L. de Guillebon, and M. Vittot. Journal of Plasma

Physics, 82(6), Dec 2016.

[8] E. Hirvijoki, J.W. Burby, D. Pfefferlé, and A.J. Brizard. Journal of Physics A: Mathematical

and Theoretical, 53(23):235204, 2020.

47th EPS Conference on Plasma Physics P2.4002


