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Introduction

When dealing with the description of a plasma through the Vlasov-Maxwell-Landau system,
both gyrokinetic and guiding-center theory are often applied to investigate solely the Vlasov-
Maxwell part and the collision operator is either neglected or heavily approximated. This is in
part because the dissipationless dynamics may be addressed with systematic reduction tech-
niques via the Lie-transform perturbation theory (see e.g. [1]) but the dissipative part of the
problem tends to lead to difficult truncation problems in trying to ensure that the effects of col-
lisions do not violate, e.g., the laws of thermodynamics. Nevertheless, the modern formulation
of collisional electrostatic gyrokinetics exhibits a metriplectic structure [2], an extension of the
Poisson bracket formalism of classical mechanics to dissipative systems that obey the laws of
thermodynamics (see e.g. [3, 4]). This observation prompts the question of whether some as-
of-yet undiscovered metriplectic perturbation theory exists. The current work provides another
indication of the possible existence of such theory and sheds further light into the issues of

developing a collision operator for electromagnetic reduced plasma theories.

Metric bracket for collisions

The Landau operator, describing the effects due to small-angle Coulomb collisions between

the species s and §, can be expressed as
V - _ =\ =
Css(fs, f5) = = > /5 ) f5(2)Q(v—9) - T':(S,2,2)dz. (1)
ms v

The coordinates z = (x,v) and zZ = (X, V) refer to different phase-space locations, the vector

I(o,2,2) = %%%—}“‘f(x) nL aav %?/( yand Q(&) = (H— §§/|€|2) 1/|&] is the familiar scaled

projection matrix. We can express the weak form of (1) as

Y [e@Cslss. fr)dz = Y5 | Ts(@.22) - Wisl2.2) Tl 7 2. 0d2dz. @)

where ¢ = [ g5(2)fs(z)dz is a functional and W(z,Z) = V50 (x — X) f5(2) f5(2)Q(v — ) is a

positive semi-definite matrix. One could view gs(z) as a test function.
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This rather peculiar form enables a straightforward identification of a functional bracket
(o2 =1, / [ T .2,2)- Wis(2.2) - T(2,2.2)d2dz, 3)

in terms of which collisional evolution of arbitrary functionals can be generalized to the func-

tional differential equation %< = (&,.). The bracket (3) has the kinetic energy % =

di coll N
Y. [ fs(z,t)mg|v|? /2dz, the momentum &2 =Y, [ f;(z,t)m¢vdz, and the mass .#; = [ msfy(z,t)dz

functionals as invariants as a result of the conditions

FSS_('%Syzyz) == 07 5(-x—j)rsf('@7z7z) - 07 st('%/7zaz) : st(zv 2) - O (4)

The convenience of the bracket formulation is that it brings the collisional evolution on equal
footing with the infinite-dimensional Hamiltonian formulation of the dissipationless Vlasov-
Maxwell part [5] and formulates the kinetic system as whole in terms of the so-called metriplec-

tic dynamics of arbitrary functionals [3, 4].

Collisional bracket for the guiding-center Vlasov-Maxwell system
The guiding-center Vlasov-Maxwell system has a variational structure and conserved quan-
tities that can be identified via analysis of the system’s Noether symmetries [6]. The global

invariants are the total energy and momentum functionals

HE(F,E, B] = /KFngC -~ / (IE[2+|B]?) dx )
P%[F,E,B) = /msvangC+—/E « Bdx, ©)

with K = %mvﬁ + uB being the individual guiding-center kinetic energy. The perturbation the-
ory compatible with preserving Hamiltonian structures primarily operates at the level of the
Lagrangian and not the Poisson structure. While this arrangement guarantees that truncations
introduced to the perturbed Lagrangian facilitate a Poisson structure that satisfies the Jacobi
identity, it does not instruct us on how to transform general brackets and functional derivatives:
the truncation problem in applying the Lie-transformation perturbation theory to the Poisson
structure still persists [7]. The alternative way to an appropriate collisional bracket is to look for
a structure similar to (3) and to appropriately modify parts of it while simultaneously juggling

with the conserved quantities. This results in a bracket

(o 3 / / (o, 2,Z) - WE(Z,2) - T(B, Z,2)dZE dZ, 7

where W& (Z,Z) = VSS—S(X X)F(Z)F;(Z)Q(T% (8¢, Z,Z)) and the vector TS, (o7, Z,Z) is

ba , Qbxp, a)&& _(b J +bepoi> 5t
s,Z

gC 7y — | = -_— — S
st(Jy)Z)Z)_ (mav B a‘LL 5F maVH B a,uv
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with Q the cyclotron frequency and p, the lowest order expression for the gyroradius. The first
part in (8) is to be evaluated at the position Z with respect to the species s parameters and the
second part in a similar manner but at Z and with respect to species 3.

The bracket has the total energy (5) and momentum (6) as invariants. As IS, (J7%¢,Z, Z)
belongs to the null space of W (Z,Z) it ensures (J7%,.o7)& = 0 with respect to arbitrary
</ . Further, the presence of §(X —X) in W ensures that (922°, &) = 0. The choices of (8)
and W, (Z,Z) together with the general expression for the bracket (7) now guarantee that if
the collisional evolution of functionals were to be given by % o (o7, )& and driven by
the entropy, both the energy and momentum conservation would be satisfied and the entropy
dissipation would be guaranteed. While the structure of the collisional bracket (7) might appear

somewhat intimidating, parts of it can be handled analytically and the gyroangle dependency in

the bracket averaged in terms of the complete elliptic integrals.

The gyrokinetic problem

The collisional bracket for the guiding-center Vlasov-Maxwell-Landau system that we have
presented and analyzed is the first one of its kind for any temporally reduced electromagnetic
kinetic plasma model. Nevertheless there exists a collisional bracket for the electrostatic gyroki-
netic model [2]. This raises the question whether analogous brackets or energetically-consistent
collision operators for other reduced electromagnetic kinetic plasma theories exist.

The particle velocity can be represented in the reduced coordinates to a reasonable accuracy
as v =X + p,. Where X captures the parallel streaming and the slower drifts while p,, captures
the fast Larmor rotation. Further, we know that the velocity-space derivative of a particle phase-
space function f can be expressed in terms of the non-canonical particle phase-space Poisson
bracket. In the electrostatic case [2], the logical expression for the vector I'(.27) in the collisional

bracket is then

o o
Z Z

In perturbed electromagnetic theories, such as the drift-kinetic and gyrokinetic ones, things are

different. The single drift-center or gyrocenter Lagrangian is presented as
L=104"—K(E|,B))+ (e/c)A; ;X' —eqy, (10)

with ¥, the six time-independent components of the unperturbed guiding-center one-form, K
the kinetic energy function, and (A1, ¢;) and (By,E) the perturbed electromagnetic potentials

and fields respectively. In this case, the particle velocity in reduced coordinates becomes

v={X+py,K} —{X+py, X} eE,. (11)
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Following the drift-kinetic system documented in [8], where the canonical toroidal momentum

and energy functionals are conserved, one finds that

%#Pm {X+Po766if}%\’» (12)
with py the single guiding-center canonical toroidal momentum. There does not appear to be
an immediate, simple way to modify (9) so that one would recover I'(.%°) = v — v, where v
is given by (11), and I'(%) = {X + p, p¢ } Which guarantee the conservation properties for
the electrostatic case. Based on our findings, we conclude that a systematic tool for performing
asymptotic dynamical reduction of collisional process, or more precisely of metric brackets, is
necessary. Although Lie-transform perturbation theory is an established tool to handle asymp-
totic dynamical reduction of dissipation-free dynamics, no similar compatible theory exists yet

to handle structure-preserving dissipative dynamics.
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