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Plasma core fuelling is a key issue for the development of steady-state scenarios in magnetically
confined plasma devices, particularly important for the helical types [1]. The primary candidate
is cryogenic pellet injection (PI), which has been used for several decades [2]. However, a
detailed understanding of some processes that occur during and after pellet ablation remains
outstanding, in particular for non-axisymmetric devices. For such devices, the complexity of
their magnetic fields, compared to tokamaks, make observations and analysis more intricate.
With the aim of improving this situation, PI studies are carried out in the stellarator TJ-1I with
an upgrade fast-frame camera system. Such studies are focussed on pellet acceleration for
different magnetic configurations. Moreover, experimental results are compared with the
stellarator version of the HPI2 code, which has already been used for comparison with

experimental data, without considering pellet acceleration, from TJ-II [3] and W7-X [4].

The TJ-II is a 4-period, low magnetic shear (A1 <6 %) stellarator with a major radius R=1.5 m,
and an average minor radius (a) <0.22 m. Its magnetic-field is created by a set of copper coils,
resulting in a bean shaped cross-section and central magnetic field, B(0) <1.1 T. Plasmas are
usually created and maintained using ECRH (P <500 kW, t <300 ms), achieving central electron
densities, ne(0), of <1.7x10'" m™, while electron and ion temperatures are Te(0) <2 keV and
Ti(0) <120 eV, respectively [5]. The TJ-11 PI (see Figure 1) is a 4-barrel pipe gun device with a
cryogenic refrigerator for in-situ pellet formation (10 K), fast propellant valves for pellet
acceleration (vp ~ 600-1200 m/s) and straight delivery lines. Cylindrical pellets, from 0.42 mm
to 1 mm in diameter, contain between 3.1x10'® and 4.2x10'° H atoms. The PI is equipped with
a light gate (LG) and a microwave cavity (MW) to estimate pellet velocity and mass [6]. Also,
two amplified Si photodiodes, fitted with interference filters centred at 660 nm, follow the pellet
cloud Hy emission (A = 656.28 nm) from above (TOP) and behind (SIDE) pellet flight. In
addition, a fast camera (FASTCAM APX-RS by Photron Inc.) records pellet injections from
above (TOP) and tangential (TANG) to the flight path. It is equipped with a coherent fibre
double bundle and a 12.5 mm lens. Its time resolution can be set from 1/frame rate to 1 ps,
while the spatial resolution varies from 1024x1024 pixels to 16x128 pixels at maximum frame

rate (250 kfps) (each pixel corresponds to ~0.6 mm to ~1 mm along the pellet flight path,
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depending on the viewport). This system follows the pellet trajectory simultaneously from two
different viewports, allowing for the 3D reconstruction of pellet trajectory.
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Figure 1. Cross-sectional sketch of the TJ-II vacuum chamber, magnetic surfaces, and the pellet injector. The
relative locations of pellet Lines#1 through #4 are indicated with respect to the rear of the PI. [7]

In this study, pellet injections into ECRH plasmas and different magnetic configuration are
analysed. As a representative example, discharge #51178 is presented, where a pellet was
injected into the TJ-Il standard configuration, 100_44 64. In Figure 2a) the H, emission
detected by the photodiode system is shown, together with the light profile from fast camera

images. Moreover, in Figure 2b &c), montages of fast camera snap-shot images are presented.
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Figure 2. a) H, emissions detected by the SIDE (solid blue) and TOP (dashed yellow) photodiodes, plus the light
profile obtained from the fast camera (TOP — dotted green — and TANG — dash — dotted green), versus distance
into plasma. They correspond to a pellet with 6.8x10%* H atoms injected into discharge #51178 at 952 m/s
(calculated from the LG — MW system) along Line #1 into the TJ-11 standard configuration. b and c) Montage of
snap-shot images for discharge #51178 when a pellet with 6.8x10% H atoms was injected along Line #1 at 952
m/s (frame rate is 87.5 kfps, exposure time is 1 ps) observed from b) TOP and c) TANG

From these fast camera images, pellet trajectories are reconstructed, and velocities and
accelerations are estimated. For that, a simply quadratic fit is used (except for the toroidal

position, which is assumed to remain constant). Results are shown in Figure 3.
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Figure 3. Pellet a) radial, b) toroidal and c) vertical positions (from fast-camera images) versus time after pellet
entry into discharge #51178, along with accelerations and initial velocities obtained from data fits.
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Same calculations are repeated for pellets injected into different configurations, namely
100 46 65, 100 48 64 and 100 50 65. Iota profiles for the standard configuration and
100_46 65 are found in Figure 4. The other two configurations follow the same tendency, i.e.,
their iota profiles should be above 100 46 65. Results from the already mentioned analysis for
these configurations are shown in Figure 5. Here, it can be observed that pellet radial
acceleration seems to increase for configurations with higher iota, while the opposite appears

to occur for the poloidal component.
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Figure 4. lota profiles corresponding to different TJ-11 magnetic configurations used during pellet injection
experiments. Main rational surfaces are also indicated [8].
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Figure 5. Pellet a) radial, b) toroidal and c) vertical positions (obtained from fast-camera images) versus time
after pellet entry into different reproducible discharges of several TJ-1I magnetic configurations (100_44 64 —
dash-dotted magenta, 100_46 65 — solid blue, 100_48 64 — dashed green and 100_50_65 — dotted yellow).
Estimated accelerations and initial velocities are also shown.

To complete the analysis, the HIP2 code [8—10] used here includes pellet acceleration in the
simulation of ablation and deposition profiles. For that, the two models already included in the
code [11] are extended to allow handling the vertical component of the acceleration. Predictions
obtained with both models are compared with TJ-II experimental results, as observed in Figure

6, where the different predicted ablation profiles and pellet trajectories are found. It is observed
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here that ablation profiles always reproduced the H, profile, except for the intensity of the final

peak. However, not all the collected light is attributed to the pellet cloud emission.
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Figure 6. a) HPI2 ablation (solid green with crosses- no acceleration, dash-dotted yellow — 1st Principles model
— and dash-dotted magenta — Semi-empirical model) profiles compared with measured Ho. profile (dotted blue)
for a pellet injected along Line #1 into #51178. b) Poloidal cross-sections corresponding to Line #1, indicated
by a black line and a closed-up to the comparison of pellet trajectories for the three cases, i.e., with constant
pellet velocity (green crosses); acceleration for the First Principles Model (yellow crosses) and acceleration for
the Semi-Empirical model (magenta crosses).

Finally, pellet position obtained with these models are compared with results from fast camera
images, as found in Figure 7. It is observed here that radial and toroidal accelerations are
relatively well reproduced, while the vertical one is better reproduced by the Semiempirical

model. However, its value is underestimated.
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Figure 7. Pellet a) radial, b) toroidal and c) vertical positions estimated with HP12 without pellet acceleration
(cyan crosses), with the 1%t Principles Model (green crosses) and the Semiempirical Model (magenta crosses)
versus time after pellet entry into discharge #51178. In addition, data from fast camera from Figure 5 is also

shown (experimental data in solid yellow with circles and fitting in dotted magenta).
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