
Reflection Simulation of KSTAR Tungsten PFC

Seungtae Oh, Kyungmin Kim and Jieun Choi

Korea Institute of Fusion Energy, Daejeon, Republic of Korea

stoh@kfe.re.kr

Tungsten is a great candidate for plasma facing components (PFCs) of tokamaks due to its

high melting temperature and high thermal conductivity. However, the reflectivity of tungsten

is not negligible and it can make the diagnostic instruments work in a wrong way due to the

signal distortions induced by the reflections. The reflection elimination can be possible when

all reflection rays coming into a sensor are tracked and subtracted. For the first process

tracking all the rays, a ray-tracing code of KSTAR, “Wray”, is successfully developed.

1. Introduction

The plasma facing components (PFCs) of KSTAR are planned to be changed into tungsten

tiles in 2022. After the changes, most diagnostic instruments of KSTAR may experience new

environments with the reflections of the tungsten tiles since the reflectance of tungsten was

reported to be more than 90 % at 3 um of wavelength [1]. Moreover, the reflectance goes up

as its temperature increases [2]. Signal distortions of the diagnostic instruments are inevitable

due to the reflections. This means that most diagnostics will not work properly under the

tungsten environments. This situation was already reported in Reference 3 that reflections

from tungsten tiles can induce 85 % over-estimation in tile temperature measurements with an

infrared camera. However, considering that most optical systems are linear systems, we might

be able to discriminate the true signal from the reflections if all ray information is given. The

ray paths could be found with ray-tracing simulations since the geometry structures of

KSTAR tokamak are all given.

In ray-tracing technique, there are two approaches (a ray-tracing way in computer graphics

and one in scientific light simulation). They are quite different since computer graphics fields

use backward ray-tracing and they just concern color while scientific simulation concerns

47th EPS Conference on Plasma Physics P3.1011

optical power through forward ray-tracing. Unfortunately, the commercial or open ray-tracing

programs do not give what we want, “full ray information such as ray hitting angle, object

name, its position and etc.”. Keeping or saving full information costs huge memory waste and

interrupts during calculations. Moreover, most ray-tracing pipelines supported by hardware or

software are encapsulated, and the modules will not permit any external intervention. So,

“Wray”, a ray-tracing simulation code of KSTAR got to be developed, and the most distinct

feature of “Wray” compared with other ray-tracing programs is to provide all information of

the ray paths and hit event information. So, the outputs of the code are a synthetic radiation

image on an IR camera and data files of all ray information.

2. Wray, ray-tracing code of KSTAR

The ray-tracing code of KSTAR, “Wray” is one of 3 parts of the reflection elimination

technique composed of “Wemi” for PFC surface property measurement, “Wray” for ray-path

information, and “Wana” for discrimination true signal as shown in Figure 1. In a program

design stage, “Wray” was supposed to have the components shown in Figure 2. To lighten the

programing loads, “Wray ver. 1” was developed on the Unity3D [4] since it already has most

components in itself such as 3D file handlings and user interfaces. The physics engine of

Unity3D has very suitable components to build ray-tracing codes for our purpose. So, the

structure of the program was simplified as shown in Figure 3. The first version of “Wray” has

successfully provided the full ray information, and the feasibility of the reflection elimination

concept has been nicely checked. However, the physics engine of Unity does not support

multi-threading. “Wray ver.1” got even slower since the ray information is saved on a SQL

database. So, the first version has a limitation to extend its functionality due to this speed. In

Figure 1. Components of “Wray” Figure 1. 3 parts of the reflection elimination technique.

Ray path finder
> Ray tracing Engine

Tile tempr.
Data map

Measr. Image

Title Temp. Map Recon.

Exp. data
Title temp.
reconstruction

Wana

Wemi Wray Wana

Reflection
simulation code

Reflection
Elimination code

Surface Property
Measurement
Hardware

Wera

Resource Usage

GP-GPU
CPU Parallelization
Memory allocation

Tokamak modeling

Cad File handling

Simulation Codes

UI

Visualization

Ray Path
Finding

Material/
surface

modeling

Ray Info.
Analysis

User

Hardware

Data file
handling

Camera Image
Formation

Tile heat load Core module

47th EPS Conference on Plasma Physics P3.1011

the next version of “Wray”, its ray-tracing engine is rebuilt from scratch without any

dependency on the physics engine of Unity. The ray-tracing engine of “Wray ver. 2” first

allocates the camera pixels into the cores of CPUs, and each pixel shoots rays as backward

ray-tracing. And, the rays are calculated by looping their hit event tracking and the child ray

generations as shown in Figure 5. Finally, all cores of CPUs can be utilized in the

computations, and the storage speed gets faster since the ray information is stored in XML

format files by individual process. The hitting checks of a single ray are usually taken over all

polygons of all objects. So, preventing the overlaps of the hitting checks, Bounding Volume

Hierachy (BVH) [5] is adopted. The scattering of the surfaces is controlled by a bidirectional

reflectivity distribution fuction (BRDF) of KSTAR PFC not by Phong shadings [6]. The

BRDF enhances the efficieny of ray utilizations since that provides the high probability of

child ray generation with high power. As shown in Figure 6, a rendering image and the ray

DataBase

unity3D

Physics
Engine
(ray hit)

Result Cooker

Ray Info.
Storage

Rasterizer

Modeling
Software

(FreeCAD)

Object
handling

Interface

KSTAR models

Ray
Control
Code
(ray

Generation,
…)

Surface parameters
(Scattering modeling, Reflectivity,…)

Core of Wray

Hardware simulator

Figure 4. Structure of “Wray ver. 2” Figure 3. Structure of “Wray ver. 1”

External Ray
tracing
engine

(ver. α2.0) Ray Info.

Unity3D

Result Cooker

Camera
Image

Rasterizer

Object
handling

Interface

KSTAR models

Surface
parameters
(Scattering
modeling,

Reflectivity,…)

Rendering
Image

<Xml>

<png>
Core of Wray

Unity3D

External
Ray tracing

engine

(ver. α2.0)

• Hit test of all radical faces
① Get the hit position of infinite plane
② The position in the face area
③ Calculate distance and ordering

>> volume classification

Ray Hit
Info. DB

Ray shoot & Hit

Child Ray Generation

Ray Generation at
Sreen

Surface
Property

UI + Model Handling

• Parallel Processing
• (power, wavelength, polarization)

PFC
models • Specular ray (inc. angle -> exit angle)

① Ray property changing at its wavelength and inc. angle

(power, polarization)

• Scattering rays (inc. angle -> exit angle)
① Ray property changing at its wavelength and inc. angle

(power, polarization)

Wana

Wemi

Reflection Elimination
code

Lab test Hardware

Figure 5. Process of ray tracing engine of “Wray ver. 2”

47th EPS Conference on Plasma Physics P3.1011

information are nicely provided by “Wray ver. 2”.

3. Summary

3 functional modules for the reflection elimination of tungsten walls of KSTAR are being

prepared under the concept that true signals can be discriminated with full ray information.

The ray information can be derived by the synthetic ray-tracing program. So, for KSTAR, the

ray-tracing program was developed as “Wray” providing a rendering image and ray path

information in XML format. “Wray” adopts multi-threading algorithms, BVH, probability

sampling for efficient usages of rays and computing resources.

Reference

1. Z. Sárosi, W. Knapp, A. Kunz, & K. Wegener, “Evaluation of reflectivity of metal parts by a thermo-camera,”

InfraMation 2010 proceedings, 475-486 (2010).

2. A. Huber, et al. "Real-time protection of the JET ITER-like wall based on near infrared imaging diagnostic

systems," Nuclear Fusion 58.10 (2018)

3. Aumeunier, M-H., et al., "Impact of reflections on the divertor and first wall temperature measurements from

the ITER infrared imaging system.", Nuclear Materials and Energy, 12 (2017): 1265-1269.

4. https://en.wikipedia.org/wiki/Unity_(game_engine)

5. https://en.wikipedia.org/wiki/Bounding_volume_hierarchy

6. https://en.wikipedia.org/wiki/Phong_shading

Figure 6. Outputs of “Wray ver. 2” : a) rendering image, b) ray information in XML format

a) b)

47th EPS Conference on Plasma Physics P3.1011

