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Introduction

COTSIM® (Control-Oriented Transport SIMulator) is a nonlinear, one-dimensional (1D) transport
code based on MATLAB® and SIMULINK®©, which makes it control-design friendly. It has a modu-
lar configuration, so the user can modify the complexity of the physics models in a functional manner
depending on his/her particular needs. This also enables a trade-off between speed (when simpler
models are used) and accuracy (when more complex models are utilized). Therefore, COTSIM® can
execute off-line fast simulations, which makes it suitable for effective iterative control design. This
includes the capabilities of testing control algorithms in closed-loop simulations and carrying out sce-
nario planning by model-based optimization. Moreover, COTSIM® is capable of providing real-time
and faster-than-real-time predictions, which makes it suitable for real-time control applications such

as feedback control, state estimation, state forecasting, and real-time optimization.
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of the mismatch between the experimental plasma state x**” and the COTSIM-predicted state X based
on the associated experimental input #“*7. The optimization problem is solved by sequential quadratic
programming (SQP), which is predicated on determining a local minimizer of the original nonlinear
program by iteratively solving a sequence of approximated quadratic programs. The approach pre-
sented in this work is general and, in principle, can be employed to tune any current, heat, and particle-
transport models. It is illustrated by using DIII-D experimental data to optimize transport models for

the electron thermal-diffusivity, x., such as the Chang-Hinton model [1, 2], the Bohm/gyro-Bohm
model [3], and the Coppi-Tang [4, 5] model.
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Analytical Transport-Models: Neoclassical, Bohm/gyro-Bohm, and Coppi-Tang Models
In general, the model for ¥, implemented within COTSIM® is given by y. = X3¢0+ &, where

ano

x2¢° is the neoclassical (NC) contribution (neo), and 5" is the anomalous contribution (ano).

neo,banana

For NC ion transport, a model similar to that proposed in [2] is employed, x/“° = x; +
%“>"F . The banana-regime contribution, x***"*" is given by
xlneo banana \/—pg k*< ) (1)
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where ap = 1.03 and b, = 0.31 are model parameters ) /Ry is the inverse aspect ratio (a and R are
m,v h A 2T;
the minor and major radiuses, respectively), pg = —5 is the poloidal gyroradius (where v, = 4/ Wi

is the ion thermal velocity, 7; and m; are the ion temperature and mass, respectively, By is the poloidal
3 /mil}

4 /mniZ%log A
time [1]. In the expression for 7;, n; is the ion density, and logA = log 1s the Coulomb logarithm,

magnetic field, and g, is the electron charge), and 7; = is the ion-ion average collision

where Ap is the Debye length and b, /2 1s the 90-degree impact parameter. In addition, the function
k5 in (1) is given by k5 = (0.66 + 1.88y/€ — 1.54¢) (B3 /B?), where (B3/B?) = (1+ 3€?) (assuming

circular flux surfaces and small Shafranov shift R6 << € [2]). Also, the normalized ion-ion collision

frequency is given by v/ = rl, V‘lg‘jfg , where Br is the toroidal magnetic field [1]. The Pfirsch-Schluter

neo,PF
, 1s given by

(PF) contribution, ¥,
C
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where ¢; = 0.36, FF'F' = f ((B3/B*) — (B*/B3)™") is the PF factor, and (B?/B)~! ~ /1 —€2. In

neo 3

this work, the approximation y,;** ~ C"¢’ x**° is used, where C"**° is a tunable constant (it must be kept

in mind that in most cases, and in particular in the tuning example shown in this paper, Y/° << x&"°).

Magnetic axis

The mixed Bohm/gyro-Bohm model [3] is given by \ \<-pb->
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) Figure 2: 1D magnetic-flux surface
The Coppi-Tang model [4, 5] is given by

configuration in tokamaks.
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where aj71, aj2; and @, are tunable parameters, P, is the total heating power, n(e) is the central electron

density, q95 is the value of g at 95% flux surface, Z, is the effective charge of the plasma ions, and

2 gn2 nd 2Ry(mp;Br)* A

B e v Vo p e3%P” ig a geometric factor, where P is the power injected within the
[« e
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magnetic-flux surface whose mean-effective minor radius is p = p/p;, (see Fig. 2), pj, is the value of
p at the last closed magnetic-flux surface, n, is the electron density, V is the plasma volume, & is the
toroidal flux, and o is a tunable constant.

In this work, ¥ is taken either as %" = x98 or as y@° = x¢7, depending on the simulation

case (see the Section entitled “Tuning Results for a DIII-D, High-g,,;, Discharge”).

Transport-parameter Tuning by Means of Nonlinear Optimization

The vector of tunable parameters in (1)-(4) is given by o = [C™% oy, ..., 065,a121,a122, O, Oy,
whereas T,” € RV contains experimental values for T, at N spatial locations during a particular
shot, i.e. T, depends on time. The tunable parameters in ¢ are determined by solving the following

nonlinear-optimization problem,

rr _ _
minJ = [(Te(mum’) — TP Q (T, (00, uP) — TP | dt, (5)

04 to

subject to C"° > 0,a,>0, o,...,05,a121,a122 > 0, (02 >2.5, (6)

where 7y and #7 are the initial and final simulation times, respectively, 7, € RY is the electron temper-
ature during a given shot as calculated by COTSIM®©, the bounds in (6) arise from the definitions of
the tunable parameters [1]-[5], and Q € RV*N is a design matrix that determines how the different
spatial locations are weighed within the optimization problem. Therefore, the objective of this nonlin-
ear optimization process is to find o such that COTSIM® yields an evolution for 7, that is as close to
TP as possible. It can be noted that the experimental input 1P must also be provided to COTSIM®

for the calculation of T, (o, u®?).

Tuning Results for a DIII-D, High-g,,;, Discharge

Tuning of the analytical transport-models (1)-(4) in COTSIM®© has been carried out using the
optimization scheme in (5)-(6) for a DIII-D Advanced Tokamak (AT) scenario. The experimental
inputs #“? from the high-g,;, shot 147634 are employed. In order to use transport models that are as
physically relevant as possible, C"*’ =1, o; =2, ap = 1, and o, = 0.5 are fixed and, therefore, not
included in the optimization process. Two cases are presented using the same NC model (1)-(2), but
different anomalous-transport models: (i) with the Bohm/gyro-Bohm model given by (3), x&" = y 92,
and (i) with the Coppi-Tang model given by (4), %" = x¢7.

The optimization is solved in a matter of a few minutes for each case, and yields oy = 4.63 X 104,
o; =~ 0 (i > 3, i.e. pure Bohm-like transport), ajz; ~ 1, aj2 ~ 0.4, and oy ~ 2.5, showing good
agreement with [1]-[5]. The values of T, are compared with 7,”” in Fig. 3 (Bohm/gyro-Bohm) and
Fig. 4 (Coppi-Tang) at r = 0.9, 2.0, 3.7, and 5.3 s, together with y,, x/°° and x5 (shown only for
p €10,0.85], i.e. from the plasma center to the the top of the pedestal at p ~ 0.85). Although a perfect

match is not achieved, good qualitative agreement between 7, and 7,”” is obtained in both cases.

Also, x°° << xd", correlating well with usual experimental observations (see e.g. [3]).
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Figure 4: Profiles for T, and x, = x™° + x<T compared with T, (from left to right, t = 0.9,2.0,3.7,5.3 s).

Conclusion and Future Work

By using a nonlinear optimization approach, fast tuning of analytical transport models for control
design has been demonstrated within the nonlinear 1D code COTSIM® and illustrated for a DIII-D
scenario by using two X, models that are substantially different in their physics. This optimization-
based tuning method can be a powerful tool for control modeling and scenario planning. Future work
may include using other analytical models (for both the confinement and the pedestal regions), ma-

chines, and plasma scenarios, and simultaneously optimizing both transport and pedestal models.
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