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Abstract

Fusion plasmas in Tokamaks can be categorized as being in mainly low (L) or high (H)
confinement states, with the possibility to be in an intermediate state referred to as “dither-
ing” (D). We present two machine lerning (ML) models for the automatic recognition of
plasma states: a real-time capable one based on a ConvLSTM [1] architecture and another
based on UTime [2] aiming to operate offline and so serving as a high-accuracy baseline for
automatic data labelling of confinement states. We benchmark the UTime and ConvLSTM
models in terms of generalization capabilities from TCV to JET and improve the extrapo-
lation significantly by resampling and detrending the input signals. We show first results on
the real-time implementation of the ConvLSTM in the TCV control system [3] and high-
light the importance in combining physics- and ML-based detectors for the robustness of

the predictions, focusing in high density limit experiments.

Introduction

In general, Tokamak plasmas can be described usually as being either in three main con-
finement states: low (L), dithering (D) or high confinement (H) modes. To keep plasma perfor-
mance, the plasma control system (PCS) has to react differently if the plasma is in L, D, or H
mode. At the same time, it is important to detect loss of confinement, since it can often be related
to the onset of specific disruption paths, e.g H-mode degradation in high density limit (HDL)
experiments. The development of real-time (RT) capable models for the automatic detection of
these states is a crucial component for the success of future large scale devices such as ITER and
present DEMO designs to enhance the control of plasmas at the highest attainable density and
confinement, optimizing therefore the energy gain. Besides, accurate models are important to
automatize the data labelling aimed at confinement transition studies currently done by experts,
which is a time consuming process. The automatic and consistent labelling of databases (DBs)
is needed to perform a plethora of analyses, interpretate experiments and model validation.
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We present new studies using two data-driven machine learning (ML) models, ConvLSTM [1]
and UTime [2], which have been demonstrated to be successful for confinement state detection,
being able to operate close to human-level precision. We present for the first time RT results of
the ConvLSTM in the TCV PCS and show how a combination between ML and physics-based
detectors can serve the control of HDL experiments. Finally, we evaluate the ConvLSTM and
UTime generalization from TCV to JET and show that accurate scores can be achieved if proper

care is taken to pre-treat the input signals by resampling and detrending.

Database preparation

Two main diagnostics were used which are sensitive to the different confinement states. A
photodiode (PD) which measures the line-integrated emitted radiation and the far infra-red in-
terferometer (FIR) which is proportional to the line integrated electron density along a line of
sight of the Tokamak. They are used in most of the existing Tokamaks and will also be available
in ITER. This results in a good choice for the cross-machine studies. Besides, they are available
in RT (for TCV) and do not depend on computationally expensive plasma equilibrium recon-
struction, which gives more flexibility. Despite that the PD in TCV has an Hy, filter, while the
used in this work in JET measures radiation from Beryllium, the dynamics of the plasma cap-
tured by the PD was shown to be similar in both devices. In contrast to previous works [1, 2],
which relied on PD, FIR, diamagnetic loop (DML) and plasma current (I,), we limited our
studies to use the PD and FIR, since the DML and /,, did not improve the ML models precision.

Fig. 1 shows the different steps followed to build the DBs to train the models. The ex-
tracted signals from the PD and FIR diagnostics were resampled from 50 kHz to 10(5) kHz in
TCV(ET). The PD in TCV consists of 14 channels looking at different plasma locations. The
channel pointing closest to the X-point was selected as input due to its higher sensitivity with
respect to the other channels. The signals were scaled by a mean value for the ConvLLSTM and
on a shot-by-shot basis for the UTime model. Dynamic Time Warping + Clustering (DTW-HC)
algorithm was used to cover as exhaustively as possible the state space of plasma confinement

in TCV and JET. Finally a multi-machine interface [5] was used to label the selected shots.

Real-time results in TCV

The ConvLSTM was embedded in the RT supervisory control of TCV called SAMONE [3].
It has an execution rate of 0.04 ms with 0.1 ms of delay. Fig. 2 shows the evolution of a TCV
HDL discharge in terms of the Hogy > confinement factor and the electron edge critical density
Ne-edge-crit [4] (left), the boundary in black denotes the empirical disruption limit. The plot in

the right shows the evolution of the distance (top panel) between the system states (Hogy ;
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Figure 1: DB preparation. Left to right: Diagnostics placement in the TCV Tokamak, signal process-
ing which consists in resampling, channel selection and normalization, DTW-HC algorithm to select a

representative state space in TCV and JET, multi-machine interface to validate the selected shots [5].

Ne-edge-crit) and the disruption limit for both online and offline computations. The mid panel
shows the ConvLLSTM predictions for L (1), D (2) and H (3). The last panel are the actuator
responses, neutral beam injection (NBI) and gas valve injection (GAS) used for plasma heating
and density control. It can be seen that the ConvLSTM predictions are well correlated with
the offline distance computation where d > dit, d ~ dgit, d < derir correspond to H, D and
L respectively. Additionally, for this particular discharge the online distance did not match the
offline, this was because FIR measurements were affected by fringe-jumps and the error was
propagated to the distance computation. Thanks to the ML-based detector, which detected the
first HDL transition, the PCS could react properly, freezing the gas at r ~ 1.15s at the HD
transition. This shows the importance on relying on a combination of independent detectors for
the robustness of the predictions.
Transfer learning from TCV to JET

Transfer learning techniques can be exploited to test ability of confinement detector to extrap-
olate to new devices for which no data exists yet, e.g ITER. For this, we selected a set of TCV
discharges that were most similar in terms of DTW distance to JET. Next, a baseline model was
trained in the selected TCV set and evaluated directly in JET. The analysis was limited only to
L and H modes. The accuracy was evaluated in terms of the Cohen’s Kappa-statistic (x), which
measures the agreement between the ground truth and the model predictions [2]. To improve the
generalization capabilities and take into account the different confinement time-scales between
the two devices, the signals in JET were resampled such that a typical length of a shot in JET
(~20s) matched a TCV one (~2s). For 10 kHz TCV signals, this resulted to be ~ 1.6 kHz in
JET. We have found also that by detrending the PD signals the generalization improved signifi-
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Figure 2: Evolution of a TCV HDL discharge in the confinement phase-space (left) and distance to the

disruptive boundary, ConvLSTM predictions and actuators (1st, 2nd and 3rd panels in the right).

cantly, attaining a score of k¥ = 0.78 and k = 0.86 for the ConvLSTM and UTime respectively,

comparing to the scores Kk = 0.27 and k¥ = 0.63 obtained without signal detrending.

Conclusions

TR
ECRT

Two ML models (ConvLSTM and UTime) were presented for the automatic detection of

plasma confinement states in TCV and JET Tokamaks. First RT results were shown in TCV with

the ConvLSTM, showing its application in the control of a HDL experiment and demonstrating

the importance of relying on a combination between physics- and ML-based detectors in terms

of robustness. Finally, preliminary studies on the extrapolation from TCV to JET have shown

promising results using signal resampling and detrending. As next steps, transfer learning from

smaller to larger devices will be studied more in detail, adding domain adaptation techniques

and data from the AUG Tokamak. We will also aim to find physics rules based on confinement

time-scales for a more machine-independent representation.
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