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Introduction
The Orbital Spectrum of the Guiding Center (GC) motion in an axisymmetric toroidal magnetic
field determines the resonant effects of non-axisymmetric perturbations on particle, energy and
momentum transport. Finite-Drift-Width effects modify the Orbital Frequencies and the respective
resonance conditions. In this work we calculate analytical expressions for the bounce/transit
frequencies as well as for the bounce/transit averaged toroidal precession and gyration frequencies
and pinpoint the location of resonances with non-axisymmetric perturbation in the phase space of

the GC motion.

Guiding Center Hamiltonian

A general axisymmetric toroidal magnetic configuration consisting of nested toroidal flux

surfaces can be represented in White—Boozer [1] coordinates as
B = gW)V{+1(y)V6 + 51, 0)Viy

where ¢ and 0 are the toroidal and poloidal angles. The toroidal flux y is related to the poloidal
flux 1, through the safety factor q(y) = dy/dy,. The functions g and I are related to the
poloidal and toroidal currents and § is related to the non-orthogonality of the coordinate system.

The GC motion of a charged particle is described by the Hamiltonian H = pﬁB2 /2+uB
where B is the magnetic field, u is the magnetic moment and p); is the velocity component parallel
to the magnetic field. The three couples of canonical conjugate variables for this GC Hamiltonian
are (4, §), (Py, 0) and (P, {) with Py = ¢ + p,I(¥) and P; = p;g(¥) — P, [1]. The Hamiltonian
can be written with respect to these canonical variables, as H(Pg, 8, P;, {, 14, €).

A general canonical transformation to drift orbit deviation variables transforms the above
Hamiltonian to a new (barred) variable set [2]. The physical meaning of the new canonical variables

becomes obvious for a Large Aspect Ratio (LAR) cylindrical equilibrium describedby g = 1,1 =
0,and B = 1 — rcos6, where r = /21 [1]. In this case the initial variables take the form Py = v,
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P; = p| — ¥, (1) and the barred variables Pg = — g, 0 =60 —q~(¥), P; = P; +¢,(¥),
¢=712]

The above transformation allows for the Full/Zero Drift Width (FDW/ZDW) formulation.
According to the ZDW formulation, the magnetic field is evaluated on a particular magnetic surface
of reference, B (1/;,9) — B(1 0), whereas the GC deviation from a field line and particle drifts are
possible. The corresponding phase spaces are depicted in Fig. 1, also compared to the, widely used

in the literature, pendulum-like Hamiltonian Hypy, [1].
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Figure 1: Phase space (p);,¢) of the Hamiltonian Hepw for g =1, u=10"* and 1, = 0.01 (left) and ¥, = 0.09
(right). The separatrices between bounce and transit motion according to H,py,, and Hyp,y, are depicted by blue and red
lines, respectively. Therefore, a particle that is described as being trapped according to Hypy, can be actually passing

according to Hypy, and vise versa. Both ZDW Hamiltonians describe GC orbits that are symmetric with respect to I

whereas according to Hgpy, positive (co-passing) and negative (counter-passing) orbits are not symmetric. These

differences strongly depend on the pitch angle and the flux surface of reference.

Analytical calculation of the Actions and the Orbital Frequencies
The action-angle transformation H(P;,{, Py, 8,1,&) © H(Jz,Js,J¢) allows for the analytical
calculation of the orbital frequencies for the three degrees of freedom. Therefor:

&, = (24 B0 = —-B 9" or = -5 il
{_a](’ 6 — 55]9’ &~ {ajg

where @ is the bounce/transit frequency, @g is the bounce/transit-averaged toroidal precession

frequency, ¢ is the bounce/transit-averaged gyration frequency and (J¢, Jg, J¢) are the actions. The

three actions and the bounce (b) / transit (t) frequencies are given by the analytical expressions

8 — —
Jt = SN [(rke — D)1 Grk, k) + K ()1, JE = 20 (ke — )11 (n, k) + K ()]

Jo' = =aWo) (P + %, () T =w

nVk(-r)Jur
2q(Yo)(m,k~1)

m(1-r)Jur
2q (o)1 (nk,k)

)

b __ ~t __
= We =



47" EPS Conference on Plasma Physics P3.1063

where r = /2, k = %, n=-— 12Trr The analytically expressions for the frequencies @q

and @; are too lengthy to be given here. Frequencies’ dependence on the trapping parameter (k) is

depicted in Fig. 2.
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Figure 2: Analytically (solid lines) and numerically (dashed lines) calculated bounce (first row) and transit (second
row) frequencies according to Hy,y, (blue line), Hypy, (red line) and Hgpy, (dashed line). In contrast to the pendulum-

like Hamiltonian case ITI’ZDW, the frequency is non-monotonic with respect to k (energy), in accordance with FDW
numerical calculations, indicating the existence of two trapped orbits with different energy but equal frequency. The
FDW Hamiltonian Hpp,, describes asymmetric orbits and consequently different frequencies for co-passing and
counter-passing orbits. The analytical formula for the ZDW Hamiltonian corresponds to an intermediate frequency
with respect to the two branches of the numerically calculated FDW frequencies, whereas the analytical formula for

the pendulum-like Hamiltonian ITI’ZDW tends to follow one of the two branches. The third row depicts the corresponding
bounce-averaged toroidal precession (left) and gyro (right) frequencies.
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Figure 3: Resonance and Energy surfaces were analytically calculated according to the resonance condition and the
energy conservation condition respectively. The interactions with non-axisymmetric perturbations take place in a
constant energy surface. It is shown that resonance conditions for s = 1/2 and s = 1/5 are not met for the passing
motion and particles with energy E = 15 - 10™* are only passing.

Non-axisymmetric Perturbations and Resonance Conditions
The presence of non-axisymmetric perturbations results in a Hamiltonian of the form:

H=H(:JoJe) + Z Hyni Uz Jo, Je)exp [i(mB — nd)]

m,n,l
The perturbations affect particle and momentum transport in a resonant fashion. The interactions

with perturbations take place in a constant energy surface. The resonance condition mgy — ni; =
0 and the energy conservation condition & (]5, Jo, ]5) = ( allow to pinpoint the exact locations of

resonances in the action space as shown in Fig. 3.

Summary and Conclusions

The ZDW formulation leads to analytical expressions for the frequencies, which significantly
differ from those corresponding to the widely used pendulum-like Hamiltonian, and show a
remarkable agreement with numerically calculated frequencies. The Action-Angle transformation
allows for determining the resonance conditions under particle interaction with non-axisymmetric
perturbations that affect energy, momentum and particle transport in toroidal plasma configurations
and the application of standard canonical perturbation methods as well as the systematic dynamical
reduction and the formulation of a bounce-kinetic description.
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