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Introduction 

 The Orbital Spectrum of the Guiding Center (GC) motion in an axisymmetric toroidal magnetic 

field determines the resonant effects of non-axisymmetric perturbations on particle, energy and 

momentum transport. Finite-Drift-Width effects modify the Orbital Frequencies and the respective 

resonance conditions. In this work we calculate analytical expressions for the bounce/transit 

frequencies as well as for the bounce/transit averaged toroidal precession and gyration frequencies 

and pinpoint the location of resonances with non-axisymmetric perturbation in the phase space of 

the GC motion. 

Guiding Center Hamiltonian 

 A general axisymmetric toroidal magnetic configuration consisting of nested toroidal flux 

surfaces can be represented in White–Boozer [1] coordinates as 

𝛣𝛣 = 𝑔𝑔(𝜓𝜓)∇𝜁𝜁 + 𝐼𝐼(𝜓𝜓)∇𝜃𝜃 + 𝛿𝛿(𝜓𝜓,𝜃𝜃)∇𝜓𝜓𝑝𝑝 

where 𝜁𝜁 and 𝜃𝜃 are the toroidal and poloidal angles. The toroidal flux 𝜓𝜓 is related to the poloidal 

flux  𝜓𝜓𝑝𝑝 through the safety factor  𝑞𝑞(𝜓𝜓) = 𝑑𝑑𝜓𝜓/𝑑𝑑𝜓𝜓𝑝𝑝. The functions 𝑔𝑔 and 𝐼𝐼 are related to the 

poloidal and toroidal currents and  𝛿𝛿 is related to the non-orthogonality of the coordinate system. 

 The GC motion of a charged particle is described by the Hamiltonian 𝛨𝛨 = 𝜌𝜌||
2𝑩𝑩2/2 + 𝜇𝜇𝑩𝑩  , 

where 𝑩𝑩 is the magnetic field, 𝜇𝜇 is the magnetic moment and 𝜌𝜌|| is the velocity component parallel 

to the magnetic field. The three couples of canonical conjugate variables for this GC Hamiltonian 

are (𝜇𝜇, 𝜉𝜉), (𝑃𝑃𝜃𝜃,𝜃𝜃) and (𝑃𝑃𝜁𝜁 , 𝜁𝜁) with 𝑃𝑃𝜃𝜃 = 𝜓𝜓 + 𝜌𝜌||𝐼𝐼(𝜓𝜓) and 𝑃𝑃𝜁𝜁 = 𝜌𝜌||𝑔𝑔(𝜓𝜓) − 𝜓𝜓𝑝𝑝 [1]. The Hamiltonian 

can be written with respect to these canonical variables, as 𝐻𝐻(𝑃𝑃𝜃𝜃,𝜃𝜃,𝑃𝑃𝜁𝜁 , 𝜁𝜁, 𝜇𝜇, 𝜉𝜉).  

 A general canonical transformation to drift orbit deviation variables transforms the above 

Hamiltonian to a new (barred) variable set [2]. The physical meaning of the new canonical variables 

becomes obvious for a Large Aspect Ratio (LAR) cylindrical equilibrium described by 𝑔𝑔 = 1, 𝐼𝐼 =

0, and 𝐵𝐵 = 1 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜃𝜃, where 𝑟𝑟 = �2𝜓𝜓 [1]. In this case the initial variables take the form 𝑃𝑃𝜃𝜃 = 𝜓𝜓, 
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𝑃𝑃𝜁𝜁 = 𝜌𝜌|| − 𝜓𝜓𝑝𝑝(𝜓𝜓) and the barred variables 𝑃𝑃�𝜃𝜃 = 𝜓𝜓 − 𝜓𝜓0  , 𝜃̅𝜃 = 𝜃𝜃 − 𝑞𝑞−1(𝜓𝜓),  𝑃𝑃𝜁𝜁� = 𝑃𝑃𝜁𝜁 + 𝜓𝜓𝑝𝑝(𝜓𝜓), 

𝜁𝜁̅ = 𝜁𝜁 [2]. 

 The above transformation allows for the Full/Zero Drift Width (FDW/ZDW) formulation. 

According to the ZDW formulation, the magnetic field is evaluated on a particular magnetic surface 

of reference, 𝐵𝐵�𝜓𝜓,𝜃𝜃� → 𝐵𝐵(𝜓𝜓0,𝜃𝜃), whereas the GC deviation from a field line and particle drifts are 

possible. The corresponding phase spaces are depicted in Fig. 1, also compared to the, widely used 

in the literature, pendulum-like Hamiltonian 𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍′  [1]. 

 
Figure 1: Phase space (𝜌𝜌||, 𝜁𝜁) of the Hamiltonian 𝐻𝐻�𝐹𝐹𝐹𝐹𝐹𝐹 for 𝑞𝑞 = 1, 𝜇𝜇 = 10−4 and 𝜓𝜓0 = 0.01 (left) and 𝜓𝜓0 = 0.09 

(right). The separatrices between bounce and transit motion according to 𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍 and 𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍′  are depicted by blue and red 

lines, respectively. Therefore, a particle that is described as being trapped according to 𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍′  can be actually passing 

according to 𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍 and vise versa. Both ZDW Hamiltonians describe GC orbits that are symmetric with respect to 𝜌𝜌||, 

whereas according to 𝐻𝐻�𝐹𝐹𝐹𝐹𝐹𝐹 positive (co-passing) and negative (counter-passing) orbits are not symmetric. These 

differences strongly depend on the pitch angle and the flux surface of reference. 

Analytical calculation of the Actions and the Orbital Frequencies 

 The action-angle transformation 𝐻𝐻��𝑃𝑃𝜁𝜁� , 𝜁𝜁 ,̅𝑃𝑃�𝜃𝜃, 𝜃̅𝜃, 𝜇̅𝜇, 𝜉𝜉̅� ↔ 𝛨𝛨��𝐽𝐽𝜁𝜁 , 𝐽𝐽𝜃𝜃 , 𝐽𝐽𝜉𝜉� allows for the analytical 

calculation of the orbital frequencies for the three degrees of freedom. Therefor: 

𝜔𝜔�𝜁𝜁 = 𝜕𝜕𝐻𝐻�

𝜕𝜕𝐽𝐽𝜁𝜁
, 𝜔𝜔�𝜃𝜃 = −𝜔𝜔�𝜁𝜁

𝜕𝜕𝐻𝐻�

𝜕𝜕𝐽𝐽𝜃𝜃
, 𝜔𝜔�𝜉𝜉 = −𝜔𝜔�𝜁𝜁

𝜕𝜕𝐻𝐻�

𝜕𝜕𝐽𝐽𝜉𝜉
 

where 𝜔𝜔�𝜁𝜁 is the bounce/transit frequency, 𝜔𝜔�𝜃𝜃 is the bounce/transit-averaged toroidal precession 

frequency, 𝜔𝜔�𝜉𝜉 is the bounce/transit-averaged gyration frequency and (𝐽𝐽𝜁𝜁, 𝐽𝐽𝜃𝜃, 𝐽𝐽𝜉𝜉) are the actions. The 

three actions and the bounce (b) / transit (t) frequencies are given by the analytical expressions 

𝐽𝐽𝜁𝜁𝑏𝑏 = 8𝑞𝑞(𝜓𝜓0)√𝜇𝜇𝑟𝑟
𝜋𝜋𝜋𝜋(1−𝑟𝑟)

[(𝜂𝜂𝑘𝑘 − 1)𝛱𝛱(𝜂𝜂𝑘𝑘,𝑘𝑘) + 𝐾𝐾(𝑘𝑘)],  𝐽𝐽𝜁𝜁𝑡𝑡 = 4𝑞𝑞(𝜓𝜓0)√𝜇𝜇𝑟𝑟
𝜋𝜋𝜋𝜋(1−𝑟𝑟)√𝑘𝑘

[(𝜂𝜂𝑘𝑘 − 1)𝛱𝛱(𝜂𝜂, 𝑘𝑘−1) + 𝐾𝐾(𝑘𝑘−1)] 

𝐽𝐽𝜃𝜃
𝑏𝑏,𝑡𝑡 = −𝑞𝑞(𝜓𝜓0)�𝑃𝑃𝜁𝜁 + 𝜓𝜓𝑝𝑝(𝜓𝜓0)�  𝐽𝐽𝜉𝜉

𝑏𝑏,𝑡𝑡 = 𝜇𝜇 

𝜔𝜔�𝜁𝜁𝑏𝑏 = 𝜋𝜋(1−𝑟𝑟)√𝜇𝜇𝑟𝑟
2𝑞𝑞(𝜓𝜓0)𝛱𝛱(𝜂𝜂𝑘𝑘,𝑘𝑘)

  𝜔𝜔�𝜁𝜁𝑡𝑡 = 𝜋𝜋√𝑘𝑘(1−𝑟𝑟)√𝜇𝜇𝑟𝑟
2𝑞𝑞(𝜓𝜓0)𝛱𝛱(𝜂𝜂,𝑘𝑘−1) 
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where 𝑟𝑟 = �2𝜓𝜓0, 𝑘𝑘 = 𝛦𝛦−𝜇𝜇(1−𝑟𝑟)
2𝜇𝜇𝑟𝑟

, 𝑛𝑛 = − 2𝑟𝑟
1−𝑟𝑟

. The analytically expressions for the frequencies 𝜔𝜔�𝜃𝜃 

and 𝜔𝜔�𝜉𝜉 are too lengthy to be given here. Frequencies’ dependence on the trapping parameter (𝑘𝑘) is 

depicted in Fig. 2. 

 

 

Figure 2: Analytically (solid lines) and numerically (dashed lines) calculated bounce (first row) and transit (second 
row) frequencies according to 𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍′  (blue line), 𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍 (red line) and 𝐻𝐻�𝐹𝐹𝐹𝐹𝐹𝐹 (dashed line). In contrast to the pendulum-
like Hamiltonian case  𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍

′ , the frequency is non-monotonic with respect to k (energy), in accordance with FDW 
numerical calculations, indicating the existence of two trapped orbits with different energy but equal frequency. The 
FDW Hamiltonian 𝐻𝐻�𝐹𝐹𝐹𝐹𝐹𝐹 describes asymmetric orbits and consequently different frequencies for co-passing and 
counter-passing orbits. The analytical formula for the ZDW Hamiltonian corresponds to an intermediate frequency 
with respect to the two branches of the numerically calculated FDW frequencies, whereas the analytical formula for 
the pendulum-like Hamiltonian 𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍

′  tends to follow one of the two branches. The third row depicts the corresponding 
bounce-averaged toroidal precession (left) and gyro (right) frequencies.  
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Figure 3: Resonance and Energy surfaces were analytically calculated according to the resonance condition and the 
energy conservation condition respectively. The interactions with non-axisymmetric perturbations take place in a 
constant energy surface. It is shown that resonance conditions for 𝑠𝑠 = 1/2 and 𝑠𝑠 = 1/5 are not met for the passing 
motion and particles with energy 𝐸𝐸 = 15 ∙ 10−4 are only passing. 

Non-axisymmetric Perturbations and Resonance Conditions 

The presence of non-axisymmetric perturbations results in a Hamiltonian of the form: 

𝐻𝐻 = 𝛨𝛨��𝐽𝐽𝜁𝜁 , 𝐽𝐽𝜃𝜃, 𝐽𝐽𝜉𝜉� + � 𝐻𝐻𝑚𝑚,𝑛𝑛,𝑙𝑙
𝑚𝑚,𝑛𝑛,𝑙𝑙

(𝐽𝐽𝜁𝜁 , 𝐽𝐽𝜃𝜃, 𝐽𝐽𝜉𝜉)exp �𝑖𝑖(𝑚𝑚𝜃𝜃� − 𝑛𝑛𝜁𝜁)� 

The perturbations affect particle and momentum transport in a resonant fashion. The interactions 

with perturbations take place in a constant energy surface. The resonance condition 𝑚𝑚𝜔𝜔�𝜃𝜃 − 𝑛𝑛𝜔𝜔�𝜁𝜁 =

0 and the energy conservation condition 𝛨𝛨��𝐽𝐽𝜁𝜁 , 𝐽𝐽𝜃𝜃, 𝐽𝐽𝜉𝜉� = 𝐶𝐶 allow to pinpoint the exact locations of 

resonances in the action space as shown in Fig. 3. 

Summary and Conclusions 

 The ZDW formulation leads to analytical expressions for the frequencies, which significantly 

differ from those corresponding to the widely used pendulum-like Hamiltonian, and show a 

remarkable agreement with numerically calculated frequencies. The Action-Angle transformation 

allows for determining the resonance conditions under particle interaction with non-axisymmetric 

perturbations that affect energy, momentum and particle transport in toroidal plasma configurations 

and the application of standard canonical perturbation methods as well as the systematic dynamical 

reduction and the formulation of a bounce-kinetic description.  
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