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Previous studies have shown that reconnection turbulence is a promising candidate for ex-

plaining the solar corona heating rate. Commonly, plasma with reduced mass ratio and β value

are used for faster convergence. While reconnection processes rely primarily on shear magnetic

fluctuations, at typical β values, compressional magnetic fluctuations can affect growth rates

and heating rates. Similiarly, even though compressional magnetic fluctuations tend not to have

a large effect in core fusion plasmas, they can affect electromagnetic modes in the tokamak

pedestal and the LAPD high-β experiments. [1]

We first use the local version, which uses the compressional magnetic fluctuations, of the

gyrokinetic code GENE with realistic β value and Hydrogen mass ratio to verify the heating

rate of the reconnection turbulence matches the observed solar corona heating rate, and confirms

extrapolations made in earlier studies. [2]

For studying reconnection heating more comprehensively, the radially global version of GENE

needs to be used. [3] This alleviates the periodic constraint on the radial direction, and enables

the use of Dirichlet or Neumann boundary conditions in the radial direction. To this end, the

radially global gyrokinetic framework including compressional fluctuations is derived and im-

plemented in the GENE code.

Due to the usage of finite-element radial base function, the magnetic potential in the two

directions perpendicular to the background magnetic field needs to be computed separately.

This decouples the B‖ from its gyroaveraged quantity B̄‖, thus a new gyroaverage procedure for

the compressional magnetic field is also implemented.

From the Poisson’s equation and Ampere’s law, we have: [4]
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Where the T ∗ is the pullback operator that transform between the real coordinate and the
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gyrocenter coordinate. The gyroaverage on the compressional magnetic field fluctuation B1‖ is

treated as:
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, c =−sinθ ê1 + cosθ ê2

From these We obtain the normalized global field equations:
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∑
σ

[
βref

2
q̂σ n̂0σ (x0)v̂T σ (x0)π

∫∫
B̂∗0‖(G
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Where the coupled Φ−B‖ equation is implemented into GENE as:

[C1]Φ̂1 +[C2]B̂1‖ = RHS1

[C3]Φ̂1 +[I]B̂1‖ = RHS2

(1)

To implement the coupled Φ-B‖ solver, two new gyromatrices G s
in and G c

in are introduced

along with the standard gyromatrix G :
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These two new gyromatrices tends to have large condition numbers for some set of param-

eters, and debugging is ongoing to improve the reliability of this implementation. Once this

task is complete, it will be deployed for the calculation of the kinetic ballooning modes in the

pedestal, where large gradients are present and the compressional magnetic fluctuations could

affect their growth rates.

For benchmarking with the local version of GENE, using the local limits:

Λn(x)→ eikxx, Λn(X)→ eikxX , ∑
n
→∑

kx
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We can obtain:
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G → J0(k⊥ρ) G c→±iMcJ1(k⊥ρ) G s→±iMsJ1(k⊥ρ)

+ for G ′c/s on fields, − for Gc/s on distribution functions.
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