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1. Introduction. The O1-mode ECRH technique is considered for the local electron heating 

providing the neoclassical tearing mode control in ITER. Until very recently the propagation 

and absorption of microwaves were believed to be predictable in detail. However, as it was 

observed in a number of the O1-mode ECRH experiments [1,2] the pump ordinary wave can 

suffer from anomalous scattering, which was explained by the nonlinear excitation of trapped 

upper hybrid waves at the local maximum of a non-monotonic density profile [3]. As shown 

in the present paper, ordinary microwaves can also suffer from nonlinear parametric 

phenomena at the plasma edge, where a transport barrier is usually observed. The presence of 

a large density gradient have a significant impact on the properties of waves in the low hybrid 

(LH) frequency range leading to new transparency windows that are absent in the 

homogeneous plasma [4]. These new modes can be 2D localized along the direction of a 

plasma inhomogeneity due to gradient effects and along the magnetic field due to magnetic 

ripples. The instability power threshold leading to the 2D localized wave excitation is much 

less than MW and can be overcome in future O1-mode ECRH experiments at ITER. 

 

2. Intermediate frequency wave trapping in strongly inhomogeneous plasmas. The usual 

approach to the analysis of intermediate frequency waves in inhomogeneous magnetized 

plasmas is the WKB approximation, which leads to the same conclusions on the wave 

transparency regions as the homogeneous plasma theory. However, strong plasma 

inhomogeneity at the plasma edge combined with a large value of the non-diagonal dielectric 

tensor component can lead to a significant change in the wave transparency [4,5], creating 

new transparency regions. The wavelength in this case remains much smaller than the plasma 

inhomogeneity scale length and therefore the effect can be accounted for in the WKB 

approximation modified by adding terms proportional to the derivatives of the dielectric 

tensor components [4]. To illustrate this phenomenon in the tokamak edge transport barrier 

(ETB), we introduce the local Cartesian coordinate system ( , , )x y z  with x  being related to 

the flux surface label, y  and z  being the coordinates perpendicular to and align with the 

magnetic field. The magnetic field in a narrow layer in the ETB has the form  
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Fig.1. Density profile normalized to 
the density at the magnetic axis 
(solid line), and the profile of its 
derivation (dashed line). 

Fig. 2. The amplification 
coefficients obtained numerically 
(dotted curve) and predicted 
analytically (solid curve). 0s = , 

0 1MWP = .  

Fig. 3. Dependence of the growth 
rate on the pump power, 2 cmw = . 
The solid curve is Eq. (6). The 
scattered circles are numerical 
solution 0.3%δ   

( ) ( )( )1 , cos /B B x y Nz Rδ= −  with N  being the number of toroidal coils, R  - the major radius of 

tokamak and δ  is the amplitude of magnetic ripples. The amplitude of the electrostatic 

electron plasma (EP) wave ( ) ( ) ( ), exp / 2 . .y Lx z iq y i t c cφ ψ ω= + +r  is described by Poisson’s 

equation ( ) ( ) ( ) ( )( )ˆ 0EPW L x L x x L y L zzD g qψ ε ω ε ω ω η ω ψ⊥= ∆ + ∂ ∂ + ∂ + ∂ =  where ε , g , η  are the 

components of the cold-plasma dielectric tensor, 2
xx yq⊥∆ = ∂ − , /ζ ζ∂ = ∂ ∂ , ,x yζ =  and the 

term ( )x Lε ω∂  being much smaller than the term ( )x Lg ω∂  by a factor of / 1L ceω ω <<  will be 

further neglected. The term /
L

xQ g
ω

ε= ∂  in the operator ˆ
EPWD  depends on the coordinates x  

and z . Taking the density profile close to that expected in ITER in the ETB [6] we plot it in 

figure 1 with its spatial derivative, which has a local maximum at mx . Since the function Q  

depends on the magnetic field, it has also a local minimum along the toroidal direction at 0z =  

between the two adjacent toroidal magnetic field coils where the pump power is launched. 

Then, we approximate the function Q  by quadratic dependencies over both coordinates 
2 2 2 2

0(1 ( ) / (2 ) / (2 ))m x zQ Q x x l z l≈ − − +  around mx x= , 0z = . Using this expansion yields  

( ) ( ) ( ) ( )2 4 2 4 2
0

ˆ , ( ) , 0EPW L m xx y y x m L m zz zD x Q q q K x x x K zψ ε ω ψ η ω ψ∂ + − − − − ∂ − =  (1) 
where ,x zK const= . The solution to equation (1), representing the EPW trapped both along the 

magnetic field and in the radial direction ( ) ( ) ( ), ( ) ,p r p x m r zf K x x f K zψ ψ= −r ,p r constψ = , is 

expressed in terms of the Hermite polynomials pf . Substituting ( )ψ r  in (1) gives the 

quantization condition for its eigenfrequency 

( ) ( )( ) ( ), 2 2 2
0 2 1 2 1 0p r

EPW L y y x zD Q q q p K r Kω ε η= − − + + + = . (2) 

These trapped EP waves, which propagate almost across the magnetic field, exist only in 

strongly inhomogeneous plasmas, where there are regions of transparency for those with a 

positive poloidal number. If the density gradient is small or the parameter 2
yq  is too large, the 

plasma for such EPW turns out to be evanescent. It should be noted that the trapped EPW has 
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another noteworthy property. According to (2) its group velocity in the y direction determined 

as ,p r
gy EPW y EPW Lv D q D ω= ∂ ∂ ∂ ∂  takes the zero value at 0 / 2yq Q∗ = .  

 

3. Low-threshold parametric excitation of the EPW trapped in the ETB. Given the 

geometry of future experiments in ITER, we consider an ordinary pump wave propagating 

perpendicular to the magnetic field along x  to the plasma core with its polarization vector 

being directed mostly along the magnetic field. By means of the WKB approximation it reads 

( ) ( )( )1/22 2 2 2
0 0 0 0 00

2 / ( )  , exp ( ) / (2 ) , . .
x

z x xP сw n x y z w i k x dx i t c cω ω ω− ′ ′= − + + − +∫E e  where 0P  - the 

pump power, w  - the width of a beam, c.c. - the term derived from the first one by complex 

conjugation, ( ) ( ) 2 2
0 0 0 0 0/ / 1 /x pek c cω ω η ω ω ω ω= = −  - the wave number. Then, we analyze the 

pump wave decay into the trapped EPW and the side-scattered ordinary wave 

( ) ( ) ( )exp / 2 . .s z s y sA x iq y i t c cω= + +E r e  in the ETB. The daughter waves are described by 

( )2 2 *
0

0

ˆ / /
ˆ /

s s s s s s nl s

EPW nl s s

D A A c A i c E

D i c E A

ω η ω κ ω ψ

ψ κ ω
⊥ ⊥

⊥

 = ∆ + = − ∆


= ∆
 (3) 

where ( )2
0/nl pe ceBκ ω ω ω=  - the nonlinear coupling coefficient. Solving the first equation in (3) 

by means of the WKB technique and substituting sA  into the RHS of second equation, we get 

the equation describing the nonlinear excitation of 2D trapped EPW 

{ }( )2 *
0 0

ˆ ( )EPW nl sD E G Eψ κ ψ⊥ ⊥= ∆ ∆  (4) 

Using the procedure of perturbation theory [7], we arrive at 

( ) ( )2 2 2 2
, 0 ,/ / exp /y p r p rt i y y wψ γ ψ∂ ∂ + Λ ∂ ∂ = −  (5) 

where 0γ  - the pumping rate, ( ), /
Ly L m EPWx Dωε ωΛ = ∂  - the EPW diffraction coefficient and 

<…> - the averaging over the region of the EPW localization. Equation (5) describes the 

exponential growth of the EPW, which occurs when the pump power exceeds the threshold 

value 0
thP . Its approximate solution growing by exponential law reads 

( ) ( ) ( ), , exp /s s
p r ins ins s yt y t i t f yψ γ δω δ= + , ( )( )1/4 1/2 4

0 0/ exp / 8 arg / 4y y w i iδ γ π γ= Λ − −  with 

( ) ( )2
0 02 1 / sin / 4s

ins ys wγ γ γ π= − + Λ , s∈  being the instability growth rate. Setting 0s
insγ =  

gives the condition for the power threshold 0
thP  

( ) ( ) ( ) ( )2
0 0 0 02 1 / sin / 4th th

yP s P wγ γ π= + Λ    (6) 

Then, we solve (5) numerically. Figure 2 shows the temporal dependence of the wave energy  
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in the pump beam localization region in semi-logarithmic scale. The solid curve corresponds 

to the same dependence but analytically predicted, s
insγ . Being close to each other, they 

indicate a temporal growth of the EPW amplitude, confirming the excitation of absolute PDI. 

Figure 3 shows the dependence of the instability growth rate defined on the pump power at 

the pump beam width of 2 cm and magnetic field ripples 0.3%δ   (solid line). The circles are 

the results of numerical solution of (5). The numerically calculated power thresholds is very 

low, 0 287 kWthP = . Rough analytical estimates of the instability power thresholds in these cases 

provided by equation (7) overestimate their real values. It should be stressed that the obtained 

values of the absolute instability power threshold is three orders of magnitude smaller than the 

value predicted for the induced scattering instability by the standard theory, thus making this 

PDI inevitable in ITER and leading to the risk of strong anomalous reflection of the power.  

 

4. Conclusions. It is predicted that the electron plasma wave trapping in the edge 

transport barrier leads to the low power-threshold induced side-scattering absolute parametric 

decay instability of ordinary microwaves. The minimum power threshold of the PDI leading 

to scattering at the angle of 0.65 π  with frequency down-shift of 1.13 GHz  is 287 kW. The 

obtained values of the power-threshold of absolute instability are three orders of magnitude 

smaller than the value predicted for the induced scattering instability by the standard theory. 

This nonlinear effect, leading to anomalous reflection of heating power, could easily occur in 

O1-mode ECRH experiments at ITER, where multiple megawatt pump beams are planned for 

utilization. Undoubtedly, this effect can have a significant impact on the performance of the 

ECRH system at ITER and should be taken into account seriously when planning the future 

experiments. 
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