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1. Introduction

Instability control in tokamaks often utilizes arrays of magnetic sensors and actuators
positioned near the plasma edge and behind plasma facing components. Placing magnetic
coils behind thick shielding walls would improve their longevity in a reactor at the expense of
reducing frequency response, while a light-based detector could still respond quickly and with
enhanced spatial sensitivity. We report the first demonstration of active feedback control of
kink modes using non-magnetic sensors consisting of extreme ultraviolet (EUV) detector arrays
as input to drive a set of magnetic control coils in real time. Suppression and amplification of
m/n = 3/1 kink modes on the HBT-EP tokamak [1] are observed as a function of the applied

feedback phase angle relative to the measured EUV emissivity fluctuations.

2. HBT-EP diagnostic and control system
An overview of the HBT-EP EUV mode
control sensors and actuators is shown in Figure 1.
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and the output matrix is updated to expand the
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3. Kink mode reference discharge
Figure 2: Contour plots of a) EUV and b)

magnetic measurements from mode activity
was used to generate the EUV basis vectors for  in shot 101393, the baseline feedback-off
discharge used to establish the mode
tracking basis set. EUV plots show the full

A reference discharge without feedback

projecting the mode measurements during

feedback. ~ An m/n=3/1 kink mode was qonal of the four arrays including
measured while the edge safety factor was near equilibrium, while the magnetic plot has the
equilibrium removed.

2.6 during a positive plasma current ramp which
maintained the instability drive via a broad current profile. Example EUV data and magnetic
fluctuations from a poloidal array of poloidal field sensors for the target period are shown in
Figure 2. A 3/1 mode rotating at 6 kHz is evident from the magnetic fluctuations, with
corresponding fluctuations in the EUV data. Forty-eight EUV chords having good response to
modes from the target discharge were selected to use for the real-time mode tracking; these
chords are indicated as coloured lines in Figure 1. The remaining edge chords had a poor
signal-to-noise ratio for this study, which has since been resolved by improving the diagnostic
grounding scheme.

Singular Value Decomposition (SVD) is used to analyse the data to extract dominant
mode features [3, 4]. Defining a matrix of fluctuating EUV data versus time as § = ULV T

yields two prominent temporal modes (chronos) within the columns of U, along with their

spatial modes (topos) within the rows of V' corresponding to quadrature bases of an n =1

mode. Defining the plasma mode’s amplitude as A(t) = /(0414 (t))? + (0,1 (t))? and
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phase as d) (t) = atan(abﬁb (t)/O’aﬁa (t)) , (a) EUV chords, SVD spatial modes
8
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each of the SVD bases, allows tracking of mode
dynamics for the feedback system. This basis
set uses no a priori prescription for the poloidal
mode structure as would be imposed from e.g. a
synthetic diagnostic. This amplitude and phase
definition also allows direct comparison with
dynamics measured using magnetic sensors, to
within an arbitrary phase offset and amplitude
scale factor. The dominant spatial modes from
analysing only the EUV data are shown in
Figure 3(a). For comparison, the spatial modes
obtained by analysing only magnetic sensors are

shown in Figure 3(b). The magnetic modes
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Figure 3: Two dominant SVD spatial modes
from a) 48 chords of the EUV system and
b) 36 poloidal field sensors from the magnetic
feedback system.

have a clear n = 1 sinusoidal geometry with a phase-shifted “sine/cosine” pair, while the EUV

mode signature is not as intuitive. Chords in EUV Array 4 yield a larger amplitude than the

other EUV chords in the spatial modes in part
due to differences in amplifier gains.
Measured mode amplitude and phase
versus time for EUV and magnetic sensors for
this period are compared in Figure 4. The
phases follow each other very well, while the
EUV data show an extra amplitude
modulation versus time which is not apparent
in the magnetic data. This EUV amplitude
modulation is likely due to the viewing chord
geometry and basis set for this particular case;
using different views or a modified basis set
would likely remove or eliminate this

modulation.
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Figure 4: Comparison of modes from
separately analysing a) magnetic data and
b) EUV data, using appropriate SVD bases.
Resulting amplitude and phase (¢ and d) agree
well between the two diagnostics.
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4. Feedback results

A feedback phase angle scan was
completed for plasmas similar to the shot
shown in Figure 2. The programmed phase
shift between the detected and applied mode
was adjusted between discharges, while the
feedback gain remained the same. Resulting
mode amplitudes versus programmed phase
are shown in Figure 5. The feedback system
was able to suppress the modes for phase
angles around 225°, and amplify at phase
Phase scan results are

angles around 0°.

qualitatively similar to phase scans using
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Figure 5: Compass scan of feedback results
versus feedback phase angle. Mode suppression
is seen at feedback phase angles near 225°.

magnetic-only feedback [2]; mode amplification is seen roughly at opposite feedback phase

angles compared to suppression.

Results here represent the first feedback run of this system using the EUV inputs.

There is room for improvement by changing the feedback algorithm or tracked EUV basis

states.

Ongoing experiments include using the system for real-time tomographic

reconstructions in the feedback loop for mode control and equilibrium position control.
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