
Vorticity equation in full-F electromagnetic

gyrofluid model and currents’ role in E ×B and

diamagnetic momentum
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1. Introduction

Recent studies in ASDEX-Upgrade (AUG) have pointed to the maximum value of the

E ×B plasma velocity of the transport barrier as the key parameter for the transition

from Low to High confinement (L-H transition)[1]. However, experiments in EAST have

pointed to the shear of the perpendicular flows (strongly coupled with E ×B flows) as

the key parameter [2]. These investigations show the crucial role that the radial electric

field driven flows play in the transition, and the necessity of understanding in depth its

dynamical behaviour.

In general, when the radial electric field related with this transport barrier is

studied, it is obtained using the radial force balance [3, 4]:

Er =
1

niZie

∂Pi
∂r
− (v⊥ ×B) · êr =

1

niZie

∂Pi
∂r
− vθBφ + vφBθ (1)

Unfortunately, this expression is derived from a steady state plasma, so it is not the

optimal way of looking at the electric field when it changes between two different states.

At the same time, this expression does not include how other plasma parameters affect

the radial electric field like different magnetic field configurations [5] or magnetic field

perturbations [6], in addition to more magnetic field parameters that affect the power

threshold that are not involved in this description (∇B drift direction, the X-point

height or the triangularity [7, 8, 9]).

All of these experimental observations point to the necessity of describing the

electric field in the edge of the plasma in a dynamical way and keeping the ingredients

that can address the effects mentioned above. In fluid type models this is usually

achieved by deriving the vorticity equation following the conservation of currents

∇ · J = 0. In these models, this equation describes both small scale eddies usually

related to turbulence as well as large scale dynamics such as transport barriers.

In this contribution, we present the vorticity equation in a full-F electromagnetic

gyro-kinetic model applying drift-ordering, which will allow us to analyze different scales

in future simulations, and the currents that appear in the equation and that can address

the experimental observations mentioned in the introduction.
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2. Vorticity Equation in gyro-fluid form

The derivation of this equation is based in the full-F, electromagnetic gyro-kinetic model

on the long wavelength limit without any assumption on the distribution function, as

presented in [10].

Our vorticity equation is described as follows:

∂Ω

∂t
+ ∇ ·∇ · (ωuE)) = ∇ · (J‖b̂ + Jb⊥ + Jcurv) + ΩS (2)

With the following definitions:

Ω = ∇ · ω =
∑
s

∇ ·
[
∇⊥

(
mP⊥

qB2

)
+
mN∇⊥φ

B2

]
(3)

ΩS = ∇ · ωS =
∑
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∇ ·
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∇⊥
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qB2

)
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B2

]
(4)
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b̂×∇A1,‖

B
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B

J‖ =
∑
s

qNU‖ (5)
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B
+
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b̂×∇ lnB

B
(6)

Jb⊥ = (J‖ + jmag)b⊥ −∇ · (Memb⊥) (7)

Mem =
∑
s
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m‖µBv‖‖

qB

)
=
∑
s

∇⊥

(
m(Q‖ + P⊥U‖)

qB

)
(8)

∑
s

qNU‖ −∇ · (M gy × b̂) = − 1

µ0

∆⊥A1,‖ = J‖ + jmag, (9)

All these definitions contain the following:
∑

s is the addition over the species (electrons

and all ion species), m and q the mass and charge of the species, Bb̂ the magnetic

field, the gyro-fluid moments for each specie(N the gyro-center density, U‖ the parallel

velocity, P⊥ and P‖ the perpendicular and parallel pressures and Q‖ the parallel heat

flux), φ and A1,‖ the electric and magnetic potential perturbation and SN and SP⊥ the

gyro-center density and pressure sources.

In the definitions we have: the vorticity and the vorticity sources in equations (3)

and (4), the perturbed magnetic field b⊥, the E × B drift and the parallel current

in equation (5), the curvature current in (6), the perturbed magnetic field current in

equation (7), the definition of the electromagnetic magnetization density in equation

(8) and the Ampere’s law in equation (9) with the relation between the Maxwell stress

∆⊥A1,‖ and the currents.

In the vorticity equation (2) we have that the change in the vorticity is being

produced by the E × B advection, the external sources of vorticity (related with the

sources of density and pressure) and the divergence of the currents. The vorticity is

strictly related to the E×B and diamagnetic flows as we are working in a full-F model

and do not separate small-scale fluctuations (although the ordering implies subsonic

E ×B flows).
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3. Discussion

The equation contains ingredients that have been experimentally observed to be relevant

in the dynamics of the edge and the L-H transition: in ELM dynamics, it has been

observed a large current density on the edge, due mostly to the bootstrap current

produced by the large density gradients, that would be included in our parallel current

(J‖b̂), and strong changes in it when close to the ejection of plasma [11], at the same time

that the radial electric field is also strongly influenced [3] by the ejection. Also, resonant

magnetic perturbations (RMP) like the ones applied in [12, 13, 14, 15] are usually used

in ELM suppression and seem to affect strongly the structure of the radial electric field

in the edge [6], which could be analyzed in our model by the fluctuation current (Jb⊥).

At the same time, the effects that the ∇B drift has on the L-H transition threshold and

in the dynamics of the radial electric field [5] could be accounted due to the curvature

current (Jcurv), as well as the other magnetic effects mentioned in the introduction.

The ion orbit losses, related to the ∇B drift, are included in the curvature current, as

no distribution function is assumed in our model. These losses with the ones that would

happen on the opposite side of a tokamak to the electrons, would be connected on the

edge region by the parallel dynamics, that would be present by the parallel current term

(J‖b̂).

This new equation allows us to do a detailed analysis of an equilibrium like it is

done in [16, 17] using FELTOR gyrofluid code [18]. In this equilibrium, we will be able

to look at the currents that play a fundamental role on the creation of momentum on

the edge, to split effects between fluctuations and main parallel current, at the same

time that we do it in a more realistic magnetic field configuration with an X-point and

even with different magnetic field configurations like Upper Single Null or Double Null,

and to look at the poloidal dependence of the currents and the creation of momentum.

Experimentally, the effect of the currents on the radial electric field could be

approached in two ways: looking at the radial electric field structure or poloidal flows

in the edge in different poloidal positions like in [19], as effects of Pfirsch-Schlüter or

curvature currents are strongly poloidally dependent and most measurement are only

done in the Outer Mid-Plane, or inducing some parallel currents on the edge via off-axis

ECCD [20, 21, 22], and seeing how this might affect the radial electric field, being even

possible to do it close to the L-H transition.

It will be also interesting to see how the radial electric field structure is affected

by the change of magnetic field configuration like in [5] in other machines, as it is

proposed under MST1-01-P18 “Radial electric field in ’favorable’ versus ’unfavorable’

configuration”, that might take place in the next experimental campaign at WEST.
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