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Plasma immersed in crossed electric E0 and magnetic B fields is subjected to a lot of insta-

bilities associated with E0×B rotation [1, 2]. The most common of them are of a convective

nature and occur for non-axisymmetric flute-like perturbations with m 6= 0 and k‖ = 0 (m is

the azimuthal wave-number of perturbations and k‖ is the projection of the wave vector on

the direction of magnetic field). This paper analytically investigates the stability of a differ-

entially rotating plasma in crossed electric and magnetic fields. The equation, describing the

electrostatic axisymmetric (m = 0) perturbations of the above plasma state, is derived within

the framework of a two-fluid model. The necessary and sufficient instability conditions as well

as the growth rate of unstable modes are obtained. It is shown that instability arises if the gen-

eralized momentum of ions decreases with radius.

Figure 1: Geometry of

the considered system.

We study the stability of axisymmetric electrostatic perturbations

in a quasineutral plasma column immersed in crossed magnetic B and

electric E0 fields, which is shown in Fig. 1. The magnetic field is axial

and homogeneous B = Bez, B = const. The electric field E0 = E0(r)er

is radial and depends on radius. The radial profile of electric field

can be maintained by a set of annular biased electrodes at different

potentials φ = φ1...φN . The equilibrium plasma density also depends

only on the radial coordinate, n0 = n0(r). We consider rotating plasma

with hot electrons and cold ions in crossed electric and magnetic fields

described by the following set of two-fluid equations:
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Here v j, n j are the velocity and density of plasma species, j = (i,e), Zni = ne; Te is the electron

temperature, which is assumed to be constant, Te = const; mi,Z,e,c are the ion mass, the charge

number, the elementary charge and the speed of light, respectively. Hereafter and below the

CGS units are used.

In a stationary state, the velocity of ions vi0 = v0(r)eθ satisfies the condition of the radial

force balance given by Eq. (1) and is described by the expression

v0± =−rωBi

2

[
1±
√

1+4
VE

rωBi

]
. (4)

Here VE =−cE0/B is the velocity of E0×B-drift, ωBi = ZeB/mic is the ion cyclotron frequency.

Below we consider only the slow rotation mode v0 ≡ v0−, for which the ion velocity is equal to

zero in the absence of electric field. Equation (4) shows that for a positive electric field E0 > 0

(directed from r = 0 to r = R) the equilibrium plasma state exists only for

E0 < Ecr, Ecr =
rω2

Bi
4

mi

Ze
. (5)

In the limit E0→ Ecr the velocity of ions tends to the critical value v0→ v0cr ≡−rωBi/2, which

is usually called the Brillouin limit [3].

The equilibrium rotation of electrons ve0 = u0(r)eθ given by Eq. (3) consists of electric VE

and diamagnetic V?e drifts:

u0 =VE +V?e, (6)

where V?e = (cTe/eB)d lnn0/dr.

For electrostatic axisymmetric perturbations, E = −∇φ̃(r,z, t), with the perturbed plasma

potential in the form φ̃(r,z, t) = Φ(r)exp[i(k‖z−ωt)] the system of equation (1)-(3) results in

the following differential equation for function Φ:
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where c2
s = ZTe/mi is the ion-sound speed, prime implies the radial derivative d(...)/dr and

κ =

(
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ωBi

)(
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r
(r2Ω)′

ωBi

)
. (8)

Together with the boundary conditions, Eq. (7) constitutes the eigenvalue problem. For plasma

column with ideally conducting wall at radius R, we require Φ(r = R) = 0, which provides

zero tangential component of the perturbed electric field, Ẽz = −k‖Φ. At the center of plasma

column, r = 0, the solution is required to be finite, |Φ(0)|< ∞.
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In the local approximation, the radial dependence of the perturbed plasma potential in Eq. (7)

can be written in the Fourier form Φ(r) ∼ exp(ikrr) with the radial wave-number kr, which

results in the local dispersion relation
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ω2 −
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r c2
s

ω2−κω2
Bi

= 0. (9)

Note that the local dispersion relation does not include the density profile n0(r).

The solutions of Eq. (9) have the form
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where ωs = kcs is the ion-sound frequency and k =
√

k2
‖+ k2

r . With no rotation κ = 1 (Ω =

0) Eq. (10) describes the dispersion of ion-sound modes in magnetized plasma. Waves with

frequencies ω+ and ω− are usually called the fast and slow ion-sound modes, respectively.

The finite speed of plasma rotation destabilizes the slow ion-sound mode if κ < 0. In physical

variables this instability condition has the form

1+
(r4ΩE)

′

r3ωBi
< 0, (11)

where Ωe = VE/r is the angular velocity related to E0×B-drift, or using the definition of the

generalized momentum Pθ = mirv0+(Ze/c)rAθ (Aθ = Br/2 is the vector potential for constant

magnetic field),
∂Pθ

∂ r
< 0.

The growth rate γ = Im(ω) of the unstable slow ion-sound mode ω− is given by

γ
2 =

ω2
Bi
2

[√
(k2ρ2

s −|κ|)
2
+4λ 2|κ|k2ρ2

s − (k2
ρ

2
s −|κ|)

]
, (12)

where λ = k‖/k and ρs = cs/ωBi is the ion-sound Larmor radius. The analysis of Eq. (12) shows

that the growth rate has a maximum γ =ωBi
√
|κ| at kr→ 0; at finite kr the growth rate increases

with k‖ – see fig. 2 (solid lines).

In the limiting case k2ρ2
s � |κ| Eq. (12) reduces to

γ
2 ≈ λ

2
ω

2
Bi|κ|, (13)

which conforms with incompressible perturbations. The dependence of γ on krρs described by

Eq. (13) is shown in Fig. 2 by dashed lines.
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Figure 2: Dependencies of the growth rate γ on radial wave-number krρs at different values of axial

wave-number k‖ρ; |κ| = 1. The straight lines and the dashed lines correspond to Eq. (12) and Eq. (13),

respectively.
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