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Plasma immersed in crossed electric Eg and magnetic B fields is subjected to a lot of insta-
bilities associated with Eqg x B rotation [1, 2]. The most common of them are of a convective
nature and occur for non-axisymmetric flute-like perturbations with m # 0 and k| =0 (m is
the azimuthal wave-number of perturbations and k is the projection of the wave vector on
the direction of magnetic field). This paper analytically investigates the stability of a differ-
entially rotating plasma in crossed electric and magnetic fields. The equation, describing the
electrostatic axisymmetric (m = 0) perturbations of the above plasma state, is derived within
the framework of a two-fluid model. The necessary and sufficient instability conditions as well
as the growth rate of unstable modes are obtained. It is shown that instability arises if the gen-

eralized momentum of ions decreases with radius.

T

We study the stability of axisymmetric electrostatic perturbations

i

in a quasineutral plasma column immersed in crossed magnetic B and

electric Eg fields, which is shown in Fig. 1. The magnetic field is axial
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and homogeneous B = Be;, B = const. The electric field Eg = Ey(r)e,

is radial and depends on radius. The radial profile of electric field

can be maintained by a set of annular biased electrodes at different

potentials ¢ = @;...¢y. The equilibrium plasma density also depends

: 1

only on the radial coordinate, ny = ng(r). We consider rotating plasma

=

with hot electrons and cold ions in crossed electric and magnetic fields
] ) ) ) Figure 1: Geometry of
described by the following set of two-fluid equations:
the considered system.
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e (E + lve X B) + EVne =0. 3)
c e
Here v;, n; are the velocity and density of plasma species, j = (i,e), Zn; = n,; T, is the electron
temperature, which is assumed to be constant, 7, = const; m;, Z, e, ¢ are the ion mass, the charge
number, the elementary charge and the speed of light, respectively. Hereafter and below the
CGS units are used.

In a stationary state, the velocity of ions vjp = vy(r)eg satisfies the condition of the radial

force balance given by Eq. (1) and is described by the expression

rp; VE
=Bt /1+4 . 4
Vo 2 l + I’(I)BJ ( )

Here Vg = —cEy /B is the velocity of Eq x B-drift, wp; = ZeB/mjc is the ion cyclotron frequency.
Below we consider only the slow rotation mode vy = vo_, for which the ion velocity is equal to
zero in the absence of electric field. Equation (4) shows that for a positive electric field Ey > 0
(directed from r = 0 to r = R) the equilibrium plasma state exists only for

2

r@s: m;
EO <Ecr7 Ecr: TBIZ_; (5)
In the limit Ey — E,, the velocity of ions tends to the critical value vy — v, = —rmp; /2, which

is usually called the Brillouin limit [3].
The equilibrium rotation of electrons v.o = ug(r)eg given by Eq. (3) consists of electric Vg
and diamagnetic V,, drifts:

uo = Ve + Vi, (6)
where V,, = (cT,/eB)dInng/dr.

For electrostatic axisymmetric perturbations, E = —V¢ (r,z,t), with the perturbed plasma
potential in the form ¢ (r,z,t) = ®(r)exp [i(kjz — o1)] the system of equation (1)-(3) results in

the following differential equation for function ®:

1 < / , kﬁc?
— 5 5 rng®’ | + ) D=0, (7
rmo \ 0- — K®; 0]
where ¢2 = ZT, /m; is the ion-sound speed, prime implies the radial derivative d(...) /dr and
Q 1 (rPQ)
K= (1+2—> (1+—u). (8)
Wpi I p;

Together with the boundary conditions, Eq. (7) constitutes the eigenvalue problem. For plasma
column with ideally conducting wall at radius R, we require ®(r = R) = 0, which provides
zero tangential component of the perturbed electric field, E, = —kP. At the center of plasma

®(0)| < oo,

column, r = 0, the solution is required to be finite,
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In the local approximation, the radial dependence of the perturbed plasma potential in Eq. (7)
can be written in the Fourier form ®(r) ~ exp(ik,r) with the radial wave-number k,, which
results in the local dispersion relation
He ea

- —0. )
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Note that the local dispersion relation does not include the density profile ny(r).

The solutions of Eq. (9) have the form

2
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where @ = kc; is the ion-sound frequency and k = , /kﬁ + k2. With no rotation k = 1 (Q =
0) Eq. (10) describes the dispersion of ion-sound modes in magnetized plasma. Waves with
frequencies @, and @_ are usually called the fast and slow ion-sound modes, respectively.
The finite speed of plasma rotation destabilizes the slow ion-sound mode if ¥ < 0. In physical
variables this instability condition has the form

(F4QE)/

1
" r3 W

<0, 11)

where Q, = Vg /r is the angular velocity related to Eq x B-drift, or using the definition of the
generalized momentum Py = m;rvo+ (Ze/c)rAg (Ag = Br/2 is the vector potential for constant

magnetic field),

dPy
—— < 0.
or =
The growth rate ¥ = Im(w) of the unstable slow ion-sound mode @_ is given by
_ 05 22 2 21 klk202 — (K2p2
7 = |\ (k22— [x]) + 422 lk2p? — (p2 — [« | (12)

where A = kH /k and ps = ¢/ @p; is the ion-sound Larmor radius. The analysis of Eq. (12) shows
that the growth rate has a maximum y = wgp; \/m at k, — 0; at finite k, the growth rate increases
with k| —see fig. 2 (solid lines).

In the limiting case k*p?2 >> | k| Eq. (12) reduces to

Y ~ A ogx|, (13)

which conforms with incompressible perturbations. The dependence of ¥ on k,p; described by
Eq. (13) is shown in Fig. 2 by dashed lines.
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Figure 2: Dependencies of the growth rate y on radial wave-number k,p; at different values of axial
wave-number k|| p; |x| = 1. The straight lines and the dashed lines correspond to Eq. (12) and Eq. (13),

respectively.
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