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Introduction

Global full- f gyrokinetic simulations, in which the total particle distribution function f is

solved without a scale separation based on the first principles, are recognized as powerful tools

to study the turbulent and neoclassical transport in magnetically confined plasmas. Rich physics

such as avalanche-like non-local transport and the enhanced neoclassical transport of impurities

has been revealed for axisymmetric tokamaks using the full- f gyrokinetic simulations. How-

ever, most of the existing global full- f gyrokinetic simulations have been applied to exclusively

to tokamaks, and the extension to three-dimensional (3D) devices such as stellarators/heliotrons

still needs much numerical effort due to their complicated magnetic field geometries. Owing to

the relatively large neoclassical transport and the ambipolar radial electric field determined by

the neoclassical particle flux, it is rather important to self-consistently study the neoclassical

and turbulent transport in 3D plasmas based on the full- f model. In this work, we report the

recent development of the 3D extension of our global full- f gyrokinetic Eulerian simulation

code, GT5D [1].

Numerical model of GT5D

GT5D is based on the modern gyrokinetic theory, in which the gyrokinetic equation for the

total particle distribution f is solved in the conservative form. In the full- f gyrokinetic simula-

tion model, it is essential to numerically satisfy the conservation laws of the particle number and

energy. For this purpose, GT5D uses the non-dissipative conservative finite difference scheme,

called Morinishi scheme [2], in which the divergence of the magnetic field should be zero so as

to guarantee the incompressible Hamiltonian flow. Thus, in extending GT5D to 3D devices, it is

required to use the solenoidal magnetic field with 3D toroidal configurations. In order to meet

the requirement, we employ an analytical 3D toroidal field model by Dommaschk [3], which

is derived to satisfy ∇ ·BBB = 0, since it is difficult for numerical equilibrium codes based on the

ideal MHD equation to rigorously satisfy the condition. The use of the model 3D fields enables

us to use Morinishi scheme in discretizing the gyrokinetic equation in GT5D.
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The electrostatic potential is determined by solving the gyrokinetic Poisson equation, or the

quasineutrality condition given as,

−∇⊥ ·
ρ2

ti

λ 2
Di

∇⊥φ − 1
λ 2

De
(φ −〈φ〉) = 4πe

∫
d6Zδ (RRR+ρρρ− xxx)δ fi, (1)

where φ is the electrostatic potential, δ fi = f − f0 is the perturbed distribution with the initial

distribution f0, RRR+ ρρρ denotes the particle position, ρρρ is the Larmor radius, d6Z is the phase

space volume of the gyrocenter coordinates (RRR,v‖,µ,α), ρti is the Larmor radius evaluated

with the thermal velocity vti =
√

Ti/mi, ΛDs (s = e, i) is the Debye length, and 〈·〉 denotes the

flux surface average. Equation (1) contains the flux surface average of the electrostatic potential

〈φ〉 as a consequence of the adiabatic electron response, which requires the construction of the

smooth magnetic coordinates for general 3D toroidal fields. However, the construction of the

magnetic coordinates for 3D configurations often suffers from a severe numerical discontinuity

near a low-order rational surface. The discontinuity can be avoided by a new numerical tech-

nique, called dense mapping, in which the field-line average computed for all field lines in the

computational domain is used to label flux surfaces [4].

Another point in extending GT5D is the development of the gyrokinetic Poisson equation

solver for 3D fields with a reasonable numerical cost. In GT5D, the gyrokinetic Poisson equa-

tion (1) is discretized in the magnetic coordinates (s,θ ,ζ ) using the finite element method

(FEM), in which the electrostatic potential φ is represented by a three-dimensional B-spline dis-

cretization: φ =∑µ φ̂µΛµ(s,θ ,ζ ). Here µ denotes a multi index of 3D finite elements Λ(s,θ ,ζ ).

Equation (1) is solved with the Dirichlet (φ = 0) and natural boundary conditions at the edge

and the axis, respectively. Multiplying Eq. (1) by Λν and integrating over the whole volume

yield a matrix form of the quasineutrality condition:(
Hµν −Mµν

)
φ̂ν = ĝµ (2)

where Mµν and Hµν are the flux surface average operator from 〈φ〉, and that from the other

terms in the left hand side of Eq. (1), respectively, and ĝµ represents the ion perturbed density.

The matrix Mµν becomes dense with a large number of non-zeros in it due to the flux surface

average, making it difficult to solve Eq. (2) efficiently. In order to reduce the computational

cost of the 3D Poisson solver, we use the matrix decomposition (MD) technique developed by

Borchardt et al [5]. Using the technique, only the Hµν part needs to be solved at each time

step, which gives the solution of Hµν φ̃ν = ĝµ ; the solution to Eq. (2) is then reconstructed by

applying additional matrix-by-vector products as φ̂ν = φ̃ν − M̃νµ φ̃µ , where M̃νµ is a matrix

precalculated at the initial step from Mµν . Since the matrix Hµν is sparse, Hµν φ̃ν = ĝµ is easily

solved using an iterative method.
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Figure 1: Time evolution of the field energy of

the linear ITG turbulence simulations in a cir-

cular tokamak observed by the original 2D and

3D versions of GT5D.
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Figure 2: Linear eigenfunctions of the ITG

mode turbulence with the toroidal mode num-

ber n = 15 observed by (left) 2D and (right) 3D

versions of GT5D.

Numerical results

For the verification of the extended version of GT5D, linear ITG turbulence simulations for

single toroidal mode n = 15 are performed for a circular concentric tokamak with Cyclone like

parameters, a/ρti = 150, and R0/a = 2.79 using the original 2D version of GT5D and its 3D

extended version, where R0 and a are the major and minor radii, respectively. It should be noted

that the Fourier decomposition in the toroidal direction is used in the Poisson solver of the 2D

version instead of B-splines of the 3D Poisson solver. Since B-splines in the 3D solver acts as a

low-pass filter in Fourier space, we impose a numerical filter, which mimics the low-pass filter

of B-splines, in the 2D Poisson solver in order to make a comparison between both versions.

Figures 1 and 2 show the time evolution of the field energy and linear eigenfunctions of the ITG

mode observed by the 2D and 3D versions of GT5D. From the figures, we can confirm that the

3D extended GT5D well reproduces almost the same results of the 2D version.

Then, the performance of the 3D Poisson solver is examined. In the performance test, we

solve the quasineutrality equation (2) using (Ns,Nθ ,Nζ ) = (130,256,32) on JFRS-1. The total

number of cores used in the test is 1600. Table 1 summarizes the elapsed time and the mem-

ory usage for three Poisson solvers in GT5D; 2D FEM with the 1D Fourier decomposition

(2D solver), 3D FEM solver, and 3D FEM solver with the matrix decomposition (MD) tech-

nique. Here, we use the direct method based on LU decomposition in the 2D solver, whereas the

iterative method (generalized minimum residual method (GMRES) with blcok Jacobi precon-

ditioner) provided by PARCEL library [6] in the 3D solvers. From the table, the memory usage

in the 3D FEM solver is significantly reduced by applying the MD technique. Furthermore, we

can achieve ∼ 40 times speed up in the 3D solver with MD compared with that without MD.

This is due to the fact that the number of the matrix-by-vector products in the iterative method
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Table 1: Summary of the elapsed time and the memory usage for the Poisson solvers of GT5D

on JFRS-1. The problem size is (Ns,Nθ ,Nζ ) = (130,256,32).

Solver Elapsed time / step Memory Usage

2D-FEM + 1D-FFT 0.39 [s] 0.82 [GByte]

3D-FEM 246 [s] 345.7 [GByte]

3D-FEM (MD) 6.18 [s] 23.05 [GByte]

in Hµν is smaller by two orders of magnitude than the total matrix Hµν −Mµν . Although the

computational cost of the 3D solver with MD is still higher than the original 2D solver, the

elapsed time is acceptable from the viewpoint of ITG simulations.

Summary

In this work, the recent development of the 3D extended version of a global full- f gyrokinetic

simulation code, GT5D, has been reported. In order to numerically satisfy the conservation

properties for complicated 3D fields, an analytical stellarator magnetic field of the Dommaschk

model is used in the 3D version of GT5D. A new gyrokinetic Poisson solver for the 3D field has

been implemented using the matrix decomposition technique by Borchardt et al. with the help

of dense mapping to construct the smooth magnetic coordinates. The 3D extended GT5D has

been successfully verified for the linear ITG simulation in an axisymmetric tokamak through

the comparison with the original 2D version. The computational time and memory usage of the

3D Poisson solver has been confirmed to be significantly reduced by the matrix decomposition

technique. Linear ITG simulations for the model stellarator fields will be performed in the next

step using the 3D extended version of GT5D developed in this work.
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