
Conservation of invariants in binary collisions in fluctuating fields

T.P.Kiviniemi, E. Hirvijoki

Department of Applied Physics, Aalto University

P.O. Box 11100, 00076 AALTO, Finland

Introduction

Charged particles in a plasma interact with each other through the long-range Coulomb colli-

sions and, in a particle-in-cell simulation, these interactions can be modelled with the so-called

binary collision (BC) methods. The two widely-used schemes are presented in Refs. [1, 2].

If equal particle weights are used, both these methods preserve kinetic momentum and en-

ergy in local homogeneous simulations, which explains the popularity of these two schemes.

The convergence properties of the methods are well established in terms of time step and par-

ticle number [3, 4] but the testing has been done excluding electromagnetic (EM) fields. In

global simulations, including configuration-space effects, the conservation properties generally

depend on time step, number of test particles, particle sampling method, interpolation schemes

and implementation of EM fields as well. The account of these effects is less established. If EM

fluctuations are included in the simulation model, they contribute to both the conserved toroidal

angular momentum and the energy (see, e.g., [5]). Consequently, the BC models should be con-

sidered in conjunction with the invariants of the collisionless dynamics. In this work, we discuss

the conserved quantities in a drift-kinetic EM model, and how the accuracy of the conservation

properties could potentially be improved while still using the standard BC model.

.

Binary collisions model

In performing particle-in-cell simulations and using the widely used BC models [1, 2], colli-

sional effects are naturally implemented so that they only change those parts of momentum and

energy that directly depend on the particle distribution function. For example, in the 6D Vlasov-

Maxwell model, the fields E and B are kept fixed during the collisional step. Correspondingly,

the global functionals

PF = ∑
s

∫
msvFsdvdx (1)

EF = ∑
s

∫ 1
2

ms|v|2Fsdvdx, (2)

should remain constant during the collisional step. Here, ms and Fs are the mass and distribution

function of species s, and x and v are the location of particle in configuration and velocity space,
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respectively.

In a BC algorithm with equal particle weights, implementing this strategy amounts to re-

questing that the kinetic energy and momentum are conserved in a pair-wise collision between

the particles p1 and p2. Effectively, one requires that the following conditions are met

mp1vp1(tn)+mp2vp2(tn) = mp1vp1(tn+1)+mp2vp2(tn+1), (3)

mp1|vp1(tn)|
2 +mp2|vp2(tn)|

2 = mp1|vp1(tn+1)|2 +mp2|vp2(tn+1)|2, (4)

where tn+1 = tn +∆t and ∆t is the time step.

If EM fluctuations are included in the simulations, they affect the quantities that are conserved

by the collisionless dynamics. Considering then also the collisional dynamics, the BC model

should retain the invariants of the colllision-free model. For fusion plasmas, an EM drift-kinetic

model that results as the k⊥ρ� 1 limiting case of the EM gyrokinetic model [6] is of particular

interest. The analysis of the conserved quantities for such a model can be found, e.g., in [5].

For this case, the "kinetic-momentum"- and the "kinetic energy"-like functionals, that the

binary-collision algorithm should leave invariant for fixed values of the fields E1 and B1, are

given by

PF = ∑
s

∫
Fs

(
esA0 +msub0−

∂Ks

∂E1
×B1

)
· eϕdudµdx, (5)

EF = ∑
s

∫ (
Ks−

∂Ks

∂E1
·E1

)
Fsdudµdx, (6)

where the summation over s again refers to particle species. Here, B0 = ∇×A0 is the back-

ground magnetic field, with b0 = B0/|B0| the corresponding unit vector. The dynamical fields

in the system are the distributional densities Fs, which include the phase-space Jacobian, and

the electric and magnetic field perturbations E1 and B1. The single drift-center kinetic energy

function in the model ([5]) is given by

K =
1
2

mu2 +µ|B0|
(

1+
b0 ·B1

|B0|
+
|B1⊥|2

2|B0|2

)
− m

2|B0|2
|E1⊥+ub0×B1|2. (7)

From the global functionals, we identify the individual particle contributions, namely

P(x,u) =
(

eA0 +mub0−
∂K
∂E1
×B1

)
· eϕ , (8)

E(x,u,µ) = K− ∂K
∂E1
·E1. (9)

Regardless of what exactly a conservative BC algorithm does, it should satisfy the pair-wise

conservation of toroidal angular momentum and total energy

P1,n +P2,n = P1,n+1 +P2,n+1, (10)

E1,n +E2,n = E1,n+1 +E2,n+1, (11)
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Figure 1: Relative change of E and P just after BCs (index "0" in xlabel) and after iterative corrections.

with the notation P1,n≡ P(x1,tn,u1,tn) etc. and (xtn,utn,µtn) and (xtn+1,utn+1,µtn+1) referring to the

particle coordinates before and after the collisional time step ∆t.

The standard BC algorithms, however, are not designed to preserve these particular invariants

in the presence of the perturbations E1 and B1, resulting in deviations ∆P and ∆E such that

P1,n +P2,n = P1,n+1 +P2,n+1 +∆P, (12)

E1,n +E2,n = E1,n+1 +E2,n+1 +∆E. (13)

Since the field fluctuations by definition are supposed to be small, the new values for veloc-

ities from a standard BC step nevertheless are expected to approximately retain the invariants,

and significant errors to accumulate only over time. Consequently, a small perturbation, e.g., a

shift in the location or velocity of particle one, x1, at every time step, could potentially be used

to make the deviations ∆E and ∆P to vanish.

Potential corrections to conserving P and E

Using (x1,x2,x3) for the configuration space coordinates of particle 1 after the standard BC

step has been taken and the errors ∆P and ∆E are known, we could adjust, say, two of the

coordinates according to ∆x1

∆x2

=

dP/dx1 dP/dx2

dE/dx1 dE/dx2

−1∆P

∆E

 (14)

to reduce the error. Further, this corrective step can be iterated to suppress the error significantly.

In 3D case, there is freedom to choose any two out of the three available components for tuning
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the quantities P and E. In toroidal coordinates, the relative errors in momentum appear to be

quite small. The correction terms depend much on the numerical parameters and mainly on

radial coordinate, P≈ P(r). Other corrections are very small.

In Fig. 1, the correction method is tested with a simple test case for sinusoidal |B1|/|B0| =

O(10−3) fluctuations. Repeated binary collisions of two particles are carried out and, after each

BC, P and E are corrected using Eq. (14). The standard deviation of the error compared to

P (E) before the BC is shown. It can be seen that correction in P is small, O(10−10), while

relative error in E is order of 10−4. Tuning with ∆r together with poloidal (∆θ ) or toroidal (∆φ )

correction shows the best performance confirming that in practise the radial coordinate r tunes

P≈ P(r) after which the fine tuning of E is done with either θ or φ .

If a scheme, such as the one described above, is adopted to enforce the conservation prop-

erties, one can expect at least some level of artificial transport which in [7] was estimated to

be

D =
(∆r)2

∆t
∼
(

B0

B0,p

)2(B1

B0

)4

ρ
2
0 ν . (15)

i.e. even if the magnetic fluctuations were comparable to the poloidal magnetic field, the term

(B0/B0,p)
2(B1/B0)

4 would remain considerably less than one. Consequently, we expect that the

transport from the corrective algorithm would remain at most at the level of classical diffusion

and likely be significantly less than that.

Conclusions

In this work, we suggested one possibility to modify the existing BC algorithms to regain

the conservation of the quantities important in transport simulations when EM fluctuations are

present. We expect such minor modifications to be also practical enough for implementations.
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