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Introduction

For the last few decades, the interaction of ion beams and charged particles with plasmas

has been an issue widely studied. Free electrons can be described by the dielectric well known

formalism [1]. Recent experiments have shown that for a variety of plasma conditions of interest

for plasma physics bound electrons contribution to stopping power is relatively important [2, 3].

Historically, there has been mainly two ways to consider the bound electrons in the stopping

theories; either by a Bethe-like expression with mean ionization potential, as in [2, 3] or with

complex Average Atom Local Density Approximation theories [4, 5]. In this work a model

is developed to consider both free and bound electrons via the dielectric formalism and the

Shellwise Local Plasma Approximation [6]. Atomic units (a.u.), e == me = 1, are used through

all the work, unless other units are stated.

Dielectric Formalism

In the dielectric formalism, the electron response of an isotropic and homogeneous material

to a perturbation produced by an external charge is contained in the dielectric function, ε(r, t)

of the medium [7]. In this formalism, the expression of the electronic stopping power is

S =
2Z2

πv2

∫
∞

0

dk
k

∫ kv

0
dωωIm

[
−1

ε(k,ω)

]
(1)

where Z is the atomic number of the projectile, ω is the frequency, k the wave number and

v is the projectile velocity. ε(k,ω) is the Fourier transform of the target dielectric function

and Im
[
−1

ε(k,ω)

]
is called the energy loss function. The energy loss in partially ionized matter

can be estimated through two contributions, free and bound electrons being the total stopping

S f ree +Sbound

Free electrons: The dielectric function of a free electron gas was calculated first by Lindhard

[1] in the RPA. The RPA is valid at high projectile energies and when electron collisions are

not significant in the gas. But, as we want to consider plasmas in a wide variety of degeneracy
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states, the dielectric function developed in [8] is more appropriate as it is valid for an electron

gas at any temperature [9]

ε(k,ω) = 1+(
1

πk
)2
∫

d3k′
f̂ (~k+~k′)− f̂ (~k′)

ω + iδ − (E~k+~k′−E~k′)
(2)

where Ek = k2/2m, δ is the collision frequency between electrons. The temperature dependence

is introduced by f (k), which is the Fermi-Dirac function. The imaginary part of the dielectric

function can be obtained by direct integration for δ → 0.

ImεA =
πχ2

0
8Z3 θ ln

(
1+ exp[η−D(u− z)2]

1+ exp[η−D(u+ z)2]

)
(3)

where χ2
0 = 1/πkF is the coupling parameter for degenerated plasmas, θ = 1/D = kBT/EF

is the reduced temperature, η = β µ , u = ω/kvF , z = k/2kF are the common dimensionless

variables, being EF =2 k2
F/2m the Fermi energy and kF = (3π2ne)

1/3 the corresponding wave

number, with ne being the free electron density. When T tends to 0, Arista dielectric function

is equivalent to Lindhard function [8]. The real part of this dielectric function may be obtained

from ImεA using the Kramers-Kronig relations,

ReεA(k,ω) = 1+
χ2

0
4Z3 [g(u+ z)−g(u− z)] (4)

where the function g(x) is given by g(x) =
∫

∞

0
ydy

eDy2−η+1
ln
∣∣∣x+y

x−y

∣∣∣.
Bound electrons: In partially ionized plasmas, the stopping power of the electrons still bound

to the target plasma ions must be taken into account. In order to include the binding energy we

use the Levine-Louie dielectric function [10]

ImεLL(k,ω) =

 ImεL(k,ωg) if |ω|> ωm

0 if |ω|< ωm
(5)

with ωm being the binding energy, ωg =
√

ω2−ω2
m, and εL being the Lindhard dielectric func-

tion as defined before. If no binding energy is considered, ωm = 0 the usual expression for the

dielectric function, Eq.4 and Eq.3 are recovered.

Shellwise Local Plasma Approximation

The SLPA formulation considers the contribution to the stopping power of each nl sub-shell

of target electrons independently [6]. The stopping power for a given nl sub-shell is calculated

as in Eq.1, where each ε is replaced by a Levine-Louie dielectric function εnl . The total stop-

ping of the bound electrons will be the addition of the sub-shell contributions St = ∑nl Snl . The
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Figure 1: Stopping cross section of protons as a function of projectile velocity. a) Solid carbon target b) Bound

electrons of a carbon gas target at different ionizations q.

Local Plasma Approximation (LPA) extends the dielectric formalism to deal with atomic bound

electrons as a free-electron gas of local density, ρnl . The new energy loss function is calculated

as

Im
[
−1

εnl(k,ω)

]
=
∫

4πr2Im
[

−1
εLLnl(k,ω,ρnl(r))

]
dr (6)

Theoretical Results

Plasma response to a traversing charged particle depends mainly on the plasma temperature

and the ionization state. First, as a basic test for the model, solid carbon and carbon gas targets

at T = 0 are studied in Fig.1. Both cases are compared with SRIM code [11]. For the solid

case, only 1s sub-shell is calculated with SLPA, while valence shells, 2s and 2p, are calculated

with the Mermin dielectric function using a collision frequency δ = 0.69 [6]. Both comparisons

offer an excellent fit to SRIM experimental data. Further, in the ionized cases of Fig.1b, as the

ionization increases, due to the consideration of the binding energies, the bound contribution

decreases quickly and the stopping is shifted to higher projectile velocities.

Now, to study the effect of temperature in our model, in Fig.2a ionization is kept constant at

q = 4 and comparison is made with a recent model, UWPM [12], which is based on Kaneko

dielectric function. Both models agree fairly well and minor differences are found at the medium

velocities, which is the most sensitive region for stopping theories.

Finally, to model a realistic plasma, temperature and ionization are considered simultaneously

in Fig.2b for a carbon plasma at different states. Notice that for the temperature range considered

in Fig.2a, considering ionization as a constant is fairly correct in this case. However, this could

change at lower densities or with heavier atoms targets.
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Figure 2: Stopping cross section of protons in a carbon plasma target at normal solid density as a function of

projectile velocity at different temperatures; a) Constant ionization q = 4. b) SLPA model with ionization varying

with temperature.

Conclusions

SLPA offers an excellent description of the stopping of bound electrons as can be seen in

the results of [6] and in the comparisons of Fig.1. Furthermore, the response of the model to

ionization and temperature effects is correct, so in principle, more precise results of stopping for

partially ionized matter are expected with respect to mean ionization Bethe-like models, which

are restricted in their ranges of validity. To model a realistic plasma ionization and temperature

must be accounted simultaneously, but results here obtained can be further improved consider-

ing the distribution of ionization states in the plasma, and ionization potential depression effects.

In the case here studied, bound electrons represent at most a 20% of the total stopping, so this

considerations will not change the results significantly, but could be relevant in other cases.
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