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Introduction

For the last few decades, the interaction of ion beams and charged particles with plasmas
has been an issue widely studied. Free electrons can be described by the dielectric well known
formalism [1]. Recent experiments have shown that for a variety of plasma conditions of interest
for plasma physics bound electrons contribution to stopping power is relatively important [2, 3].
Historically, there has been mainly two ways to consider the bound electrons in the stopping
theories; either by a Bethe-like expression with mean ionization potential, as in [2, 3] or with
complex Average Atom Local Density Approximation theories [4, 5]. In this work a model
is developed to consider both free and bound electrons via the dielectric formalism and the
Shellwise Local Plasma Approximation [6]. Atomic units (a.u.), e == m, = 1, are used through

all the work, unless other units are stated.

Dielectric Formalism
In the dielectric formalism, the electron response of an isotropic and homogeneous material
to a perturbation produced by an external charge is contained in the dielectric function, &(r,t)

of the medium [7]. In this formalism, the expression of the electronic stopping power is
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where Z is the atomic number of the projectile, w is the frequency, k the wave number and

v is the projectile velocity. €(k, ) is the Fourier transform of the target dielectric function
and Im [8(;—1(0)] is called the energy loss function. The energy loss in partially ionized matter
can be estimated through two contributions, free and bound electrons being the total stopping
S free + Sbound

Free electrons: The dielectric function of a free electron gas was calculated first by Lindhard

[1] in the RPA. The RPA is valid at high projectile energies and when electron collisions are

not significant in the gas. But, as we want to consider plasmas in a wide variety of degeneracy
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states, the dielectric function developed in [8] is more appropriate as it is valid for an electron

gas at any temperature [9]
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where E; = k% /2m, § is the collision frequency between electrons. The temperature dependence
is introduced by f(k), which is the Fermi-Dirac function. The imaginary part of the dielectric

function can be obtained by direct integration for 6 — 0.
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where x5 = 1/mkp is the coupling parameter for degenerated plasmas, 0 = 1/D = kT /Ef
is the reduced temperature, N1 = B, u = @/kvp, z = k/2kp are the common dimensionless
variables, being Ep =2 k% /2m the Fermi energy and kp = (372n,)'/3 the corresponding wave
number, with n, being the free electron density. When T tends to 0, Arista dielectric function
is equivalent to Lindhard function [8]. The real part of this dielectric function may be obtained

from Img, using the Kramers-Kronig relations,
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where the function g(x) is given by g(x) = [;° Dyy dﬁ+ 1 f_ri‘

Bound electrons: In partially ionized plasmas, the stopping power of the electrons still bound
to the target plasma ions must be taken into account. In order to include the binding energy we

use the Levine-Louie dielectric function [10]
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with @), being the binding energy, w, = v/ ®? — ®2,, and € being the Lindhard dielectric func-
tion as defined before. If no binding energy is considered, w,, = 0 the usual expression for the

dielectric function, Eq.4 and Eq.3 are recovered.

Shellwise Local Plasma Approximation

The SLPA formulation considers the contribution to the stopping power of each nl sub-shell
of target electrons independently [6]. The stopping power for a given nl/ sub-shell is calculated
as in Eq.1, where each € is replaced by a Levine-Louie dielectric function &,;. The total stop-

ping of the bound electrons will be the addition of the sub-shell contributions S; =Y ,,; S,;. The
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Figure 1: Stopping cross section of protons as a function of projectile velocity. a) Solid carbon target b) Bound

electrons of a carbon gas target at different ionizations g.

Local Plasma Approximation (LPA) extends the dielectric formalism to deal with atomic bound
electrons as a free-electron gas of local density, p,;. The new energy loss function is calculated

as
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Theoretical Results

Plasma response to a traversing charged particle depends mainly on the plasma temperature
and the ionization state. First, as a basic test for the model, solid carbon and carbon gas targets
at T = O are studied in Fig.1. Both cases are compared with SRIM code [11]. For the solid
case, only 1s sub-shell is calculated with SLPA, while valence shells, 2s and 2p, are calculated
with the Mermin dielectric function using a collision frequency 8 = 0.69 [6]. Both comparisons
offer an excellent fit to SRIM experimental data. Further, in the ionized cases of Fig.1b, as the
ionization increases, due to the consideration of the binding energies, the bound contribution
decreases quickly and the stopping is shifted to higher projectile velocities.

Now, to study the effect of temperature in our model, in Fig.2a ionization is kept constant at
g = 4 and comparison is made with a recent model, UWPM [12], which is based on Kaneko
dielectric function. Both models agree fairly well and minor differences are found at the medium
velocities, which is the most sensitive region for stopping theories.

Finally, to model a realistic plasma, temperature and ionization are considered simultaneously
in Fig.2b for a carbon plasma at different states. Notice that for the temperature range considered
in Fig.2a, considering ionization as a constant is fairly correct in this case. However, this could

change at lower densities or with heavier atoms targets.
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Figure 2: Stopping cross section of protons in a carbon plasma target at normal solid density as a function of
projectile velocity at different temperatures; a) Constant ionization g = 4. b) SLPA model with ionization varying

with temperature.

Conclusions

SLPA offers an excellent description of the stopping of bound electrons as can be seen in
the results of [6] and in the comparisons of Fig.1. Furthermore, the response of the model to
ionization and temperature effects is correct, so in principle, more precise results of stopping for
partially ionized matter are expected with respect to mean ionization Bethe-like models, which
are restricted in their ranges of validity. To model a realistic plasma ionization and temperature
must be accounted simultaneously, but results here obtained can be further improved consider-
ing the distribution of ionization states in the plasma, and ionization potential depression effects.
In the case here studied, bound electrons represent at most a 20% of the total stopping, so this

considerations will not change the results significantly, but could be relevant in other cases.
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