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Introduction

In the ECR plasma, electron energy distribution function (EEDF) takes significantly non-
Maxwellian shape that determines plasma confinement regime and ionization efficiency, which,
in turn, affects the performance of the ion sources based on such plasmas. Understanding the
formation of the EEDF will make it possible to predict ion composition in the plasma and
the beams acquired from the ion source and tune it to the optimal performance. In this work,
the EEDF of the hot electrons escaping from the simple mirror magnetic trap were directly
measured with a recently developed method [2] in a wide range of neutral gas pressures and
gyrotron powers along. Additionally, the spectra of bremsstrahlung caused by energetic elec-
trons leaving the plasma were obtained. A series of experiments was performed on the newly
constructed Gasdynamic lon Source for Multipurpose Operation facility (GISMO) [1] allowing
record-breaking specific energy input into the plasma. For certain values of neutral gas pres-
sures, obtained distributions showed a threshold-like evolution in shape with the increase in
input power, which was accompanied with the appearance of bremsstrahlung. This effect is

presumably associated with the development of kinetic instabilities in the plasma.

Experimental setup

The experiments described in this work were carried out on the Gasdynamic lon Source for
Multipurpose Operation facility, a gasdynamic ECR source with a high specific energy input
created at the IAP RAS [1].

The setup diagram is shown in fig.1. By using a modern gyrotron generating radiation at a
frequency of 28 GHz with power up to 10 kW, GISMO makes it possible to achieve record-
breaking values of the specific energy input into the plasma of a continuous ECR discharge at
a level of up to 50 — 100 W/ cm?, whereas for traditional ion sources this value does not exceed
1-5W/cm?.

Another important advantage of GISMO is the ability to operate in a wide range of gas
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pressures in the discharge from 1072 Torr to 10~ Torr, which makes it possible to conduct
research both in classical (collisionless) and quasi-gasdynamic (collisional) confinement modes.

In GISMO, the plasma is confined in a
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an area with B = 0, downstream the mirror
trap. It is important to note that the pres-
ence of a cusp makes it possible to observe
only electrons located close to the symme-
try axis of the system. A significant frac-
tion of the electrons is lost on the cham-
ber walls, thus generating bremsstrahlung. Figure 1: The experimental scheme
The energy distribution of electrons escap-

ing the magnetic trap was obtained as follows. The method is similar to ion mass spectrometry
with an inverted polarity of an electromagnet that deflects charged particles, as described in
[3]. A secondary electron multiplier and a Stanford SR570 current preamplifier were used to
register electron currents as small as 1 pkA. A voltage of -3.5 kV was applied to the cathode of
the electron multiplier with respect to the chamber potential, which prevented the registration
of electrons with energies below 3.5 keV. The geometry of the system made it possible to allow
scanning with the resolution of about 1 keV.

When processing the data and reconstructing the
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due to the geometric peculiarities of the system. electron signal

Experimental results
The EEDFs were measured in a wide range of hydrogen pressures and powers of microwave

radiation that sustains the ECR discharge. Simultaneously with these measurements, bremsstrahlung
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spectra were obtained. Amptek’s XR-100T-CdTe X-ray detector was installed in a way to ob-

serve the end of the plasma chamber, where the energetic particles precipitated and emitted

bremsstrahlung.
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Figure 3: EEDF (a) and bremsstrahlung spectrum (b) evolution with gyrotron power for 2 mTorr

Energy distributions and bremsstrahlung spectra
showed unconventional behavior as the function of ex-
ternal parameters. An example of obtained distribu-
tions is presented in Fig. 3a. A threshold-like effect
is seen at the power of about 2 kW, where the EEDF
shape dramatically changes along with the number of
electrons reaching the detector and the intensity of
bremsstrahlung (Fig. 5a, b). A fraction of ‘hot’ elec-
trons is presumably formed from the instabilities. The
latter increase of the gyrotron power barely changes

the shape of the distributions (Fig. 4), while electron
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Figure 4: EEDF shape evolution with

power for 2 mTorr of neutral gas

current and bremsstrahlung count rate nearly reach saturation. However, the evolution of the

EEDF shape came along with bursts of electrons that formed the energetic peaks on the dis-

tribution. Such bursts can be associated with kinetic instabilities occurring in the ECR plasma

when the gyrotron power exceeds some threshold value (o< 1.7 kW). The bremsstrahlung that is

seen by detector through steel walls of the vacuum chamber (> 10 — 20 keV) appears with the

development of the unstable hot fraction of electrons. The spectrum shape does not change with

the increase of the gyrotron power (Fig. 3b), but the growth of the count rate is strongly corre-
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Total electron current for different pressures (mTorr)
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Figure 5: Total electron current (a) and quants number (b) dependence on power and pressure.

lated with the number of electrons escaping from the plasma. This fact leads to the conclusion
that the main source of bremsstrahlung in the ECR sources might be hot electrons leaving the

plasma and hitting the walls of the chamber.

Conclusion

The energy distributions of the electrons lost from gyrotron-heated ECR plasma with specific
energy input of up to 100 W /cm? were obtained for the first time. The observations showed that
the shape of the EEDF dramatically changes when the power exceeds certain threshold, presum-
ably as a result of the development of the kinetic instabilities. Bremsstrahlung is also strongly
correlated with the above-mentioned threshold, which gives the potential of the bremsstrahlung

suppression by the EEDF modification.
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