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Introduction

The instabilities of thin current sheets that lead to the formation of plasmoids have been

greatly studied ( see, e.g. Refs. [1, 2]) and were shown to play an important role for achieving

large reconnection rates.

In this proceeding paper, we investigate the plasmoid formation employing both fluid and

gyrokinetic simulations, assuming a plasma with cold ions that is immersed in a strong guide

field, resulting in low plasma βe. We present simulations of a marginally stable collisionless

current sheet, formed after the tearing instability. We focus on two different regimes, ρs ≪ de

and ρs ≫ de, where ρs =
1
L

√
T0e
mi

mic
eB0

and de =
1
Lc
√

me
4πe2n0

, correspond to the normalized sonic

Larmor radius and electron skin depth, respectively, and L is the characteristic equilibrium scale

length.

Set up

The fluid model is the cold ion Larmor radius limit of the model derived in [3], and retains

electron inertia. Specifically, the equations governing the plasma dynamics are

∂ne

∂ t
+[φ ,ne] = [A∥,ue] , (1)

∂

∂ t

(
A∥−d2

e ue
)
+
[
φ ,A∥−d2

e ue
]
= ρ

2
s [ne,A∥] , (2)

where A∥ and φ are the magnetic and electrostatic potential, normalized as A∥ = Â∥/(LB0) and

φ = cφ̂/(vALB0), where ne = ∇2
⊥φ is the electron density perturbation, and ue = ∇2

⊥A∥ is the

parallel electron velocity, also proportional to the current density. The time and spatial variables

are normalized as t = vAt̂/L and x = x̂/L, where vA is the Alfvén velocity. We consider a slab

48th EPS Conference on Plasma Physics O1.402



Parameters
de ρs ∆‘

0.1 0.0 14.3

Parameters
de ρs ∆‘

0.07 0.4 14.3

Figure 1: Growth rate evolution and contour plot of the parallel current density with iso-potential

lines for, de = 0.1 and ρs = 0.0 (top) and de = 0.07 and ρs = 0.4 (bottom). The number of grid

points is 1728×1728.

geometry in which the magnetic field is given by B ≈ ẑ+∇A∥ × ẑ. The perpendicular flow

velocity is given by u⊥ = ẑ×∇φ . In Eqs. (1) and (2), [ f ,g] = ∂x f ∂yg−∂y f ∂xg.

We performed 2D simulations in a slab geometry. We assume a tearing equilibrium given

by φ (0)(x) = 0, A(0)
∥ (x) = A0/cosh2 (x). The tearing parameter for this equilibrium is ∆′

box =

2
(
5− k2

y
)(

k2
y +3

)
/(k2

y(k
2
y +4)1/2).

The fluid model (1) and (2) allowed to determine a plasmoid regime [4] (preprint available at

https://arxiv.org/abs/2206.06412). Figure 1 shows two simulations for which the cur-

rent sheet is at a state of marginal stability and confirms the results obtained in the preprint [4]

i.e, that the regime ρs ≫ de promotes the onset of plasmoids. On Fig. 1 we can see that, if elec-

tron inertia dominates, an elongated current sheet develops from the ideal fluid motion. On the

other hand, when the ion-sound Larmor radius is significantly large compared to the electron

skin depth, the shape of the current layer is notably affected and follows the separatrices. As

will be shown, taking into account the ion-sound Larmor radius effects (which corresponds to

including a parallel compressibility of the electrons) can promote the onset of plasmoids.

In the next section we focus on a comparison of fluid and gyrokinetic simulations of a

marginally stable current sheet.

Comparisons for a marginally stable case

The gyrokinetic model, adopted for the comparison, is a δ f model, from which the fluid

model can be derived with appropriate approximations and closure hypotheses [5]. The gyroki-
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Figure 2: Left panels: fluid simulations. Right panels: gyrokinetic simulations with the same

de and ρs. For the fluid case, we show the contour of the parallel electron velocity. For the

gyrokinetic case, we show the contour of the current density. For each simulation we show an

overplot of the profile of the parallel electron velocity ue at y = 0 and of the y component of

the perpendicular flow (outflow coming out of the current sheet). The outflow profile position is

indicated on top of the figures and corresponds to y ∼ Lcs/2. For the simulation de = 0.085 and

ρs = 0.5 we also show the time evolution of the energy variations.
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netic equations are solved by means of the Astro GK code, presented and used in [6, 7]. In

the fluid case, the Eqs. (1) and (2) assume βe ∼ me/mi ∼ 0. The gyrokinetic simulations were

therefore carried out with me/mi = 0.0025 and the corresponding value of βe is reported in the

table. The temperature ratio was set to τ = T0i/T0e = 10−3, implying a ion Larmor radius of

ρi =
√

2.10−3ρs.

We compare the simulations presented in Fig. 2. This comparison makes it possible to confirm

that, by simply adding bi-fluid effects resulting from a large ion-sound Larmor radius, one can

switch from a marginally stable case to a marginally unstable case, even when it implies that

the plasma βe increases as well. Indeed, the idea was to check if the instability threshold would

change significantly when also including kinetic effects, assuming a small βe and the small

parallel ion dynamic that it brings, and which is neglected in the fluid model.

For the plasmoid unstable case, ρs > de, two-fluid effects lead to a decoupling of the plasma

flow channel from the electric current density, and in this case we find a reconnection rate

Rrec ∼ (δoutf/Loutf)
(2)
⋆ vABup ∼ 0.1vABup, where δoutf and Loutf are the outflow velocity channel

coming out from the end of the current sheet, and Bup is the reconnecting magnetic field. Figure

2 also shows the variation of the energy components of the simulation de = 0.085 and ρs = 0.5.

It is possible to observe that, in the fluid and gyrokinetic cases, the decrease in time of magnetic

energy is similar. The gyrokinetic perpendicular ion velocity is well represented by the fluid

E×B velocity. On the other hand, gyrokinetic simulations show a large fraction of magnetic

energy transferred to fluctuations of higher order moments.

These results contribute to shed light on collisionless reconnection mediated by the plasmoid

instability, and in particular on the role of the sonic Larmor radius.
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