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High energy confinement (7,) is required for a steady-state fusion reactor [1]. High confine-
ment is typically achieved in positive triangularity (8) H-mode plasmas. Positive-0 has long
been known to improve both confinement and stability. However, the improvement in con-
finement from the H-mode pedestal typically is accompanied by edge localized modes, which
produce large spikes in energy flux that can erode the divertor. Experiments on TCV [2] and
DIII-D [3] have shown that L-mode confinement improves dramatically in a negative-6 shape.
Two similar DIII-D discharges with matched values for major radius, minor radius, and elonga-
tion, but opposite 6 = —0.4,0.4 were compared. The plasmas were heated with up to 10 MW
of neutral beam injection (NBI) power and up to 3 MW of electron cyclotron heating (ECH)
power and had high levels of confinement.

The earliest modeling of transport of negative-6 suggested that trapped electron modes (TEM)
could be suppressed by negative-d [4]. Gyrokinetic simulations of TCV discharges suggested
that trapped electron modes were suppressed in negative-0 compared to the positive-6 counter-
part [S]. Exploration of negative-d showed that negative-6 has reduced transport compared to
positive-0 [6], and suggested negative-6 may increase the critical gradient leading to improved
transport [7].

The predictive capabilities of TGYRO [8] find that predicted profiles of electron temperature
(T¢), ion temperature (7;), electron density (7n.), and E x B shear (@) agree reasonably well in
both negative-0 and positive-6 at low auxiliary powers (< 5 MW). TGYRO is analyzed for a
positive-8 and a negative-6 plasma heated with Pgc =2 MW and Pyg; = 2 MW with a fixed
boundary condition for the kinetic profiles in these simulations is set to the experimental values
at p = 0.8. Figure 1 shows the experimental profile fits and the TGYRO predicted profiles
of T;, T, ne, and ® in positive-6 and negative-0. Experiments and TGYRO predictions both
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Figure 1: TGYRO prediction (solid) of ne, T, T,, and ® and experimental profile fits (dashed) in
NBI+ECH heated plasmas in positive-8 (blue) and in negative-0 (green).

have higher values for n. and T; are observed in negative-6 compared to positive-6. The T

profile is slightly underpredicted for both positive-6 and negative-6. The T; profile is slightly

overpredicted (~10%) for positive-0, while it is almost perfectly predicted in negative-o.
Analysis of the turbulent transport using

the quasilinear gyro-Landau fluid code TGLF 15

— postive-d
— negative-5 | |

[9] is performed. TGLF predicts a large dif-

ference in particle flux (I') between positive-
0 and negative-9 as a function of temperature
gradient scale length a/Ly,, as shown in Fig- : __—
ure 2. Here, a is the minor radius, 1/Ly, = 4t I.

dT./dr/T.. As a/Lrg, is increased, the pre-
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dicted I" for the negative-0 scenario becomes

negative. This is opposite to the predicted flux
& bP P Figure 2: TGLF-SATO predicted T (10 m=2 s~ 1)

in the positive-0 scenario where I increases
p at p = 0.6 for a positive-8 and negative-8 ECH only

as a/Lr, moves away from the experimental plasma plotted vs. a/Lg,. The vertical dashed lines

gradient. This difference in particle transport ;v ..o the experimental scale lengths.

behavior could possibly lead to better con-

finement for negative-d with negative-0 having better higher experimental n, and T, in Figure 2.
Core-pedestal modeling shows confinement and By improve at negative d and at positive 0.

Similar parameters to the DIII-D experiment of By = 2, ne peq = 0.35 X 102 m=3, k = 1.6,

B; =2T, and I, = 0.8 MA are used. Modeling is done using the STEP [10] module in OMFIT

[11], which iterates between TGYROI[8], ONETWO [12], and CHEASE [13]. TGYRO is used

to predict kinetic profiles. ONETWO is used to predict the current evolution. CHEASE is used
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to to ensure Grad-Shafranov is satisfied with a Miller geometry The current is evolved assuming
the current fully penetrates to steady-state from neoclassical resistivity. An additional radially
constant current diffusion is applied where ¢ < 1 to raise the on-axis ¢ just above unity. A
radially uniform Z,rr = 1.7 is used. Fixed Gaussian sources of electron heating are used, one
located at p = 0.6 and the other at p = 0.0 to represent electron cyclotron heating. The pedestal
boundary condition is taken to be the EPED [14] prediction with By = 2 shown in Figure 3.
The pedestal height increases monotonically with increasing 6. While H-mode has rarely been
observed experimentally for strong negative-6 potentially prevented due to ballooning modes
[15], we still use EPED to set the edge conditions for negative triangularity as EPED has been
shown to accurately predict negative-6 plasma down to 6 = —0.2 [16]. Using EPED below 6 =
—0.2 gives a reduction in edge confinement at negative-0 without needing different edge models
for negative-6 and positive-6. TGLF-SATO is used in TGYRO with settings for electrostatic and
using the E x B quench rule.

The STEP predicted confinement improve-

ment at negative-9 is predicted to be stronger 2.4], 50 MW ' P
s omw o .
at high power densities and with strong elec- ‘\:\:\:/:__/
1.8t /‘/:
tron heating sources. Figure 3 shows STEP —o - O MW Aoy
. ¢ . g. . P e o e e ]
predicted By vs triangularity for two injected //
powers: 10 MW and 20 MW, and NBI only 0.6  EPED '
and a 50/50 mix of NBI+ECH. At P,,, = 0.0 o 50 02
10 MW for both heating types, modest im- o

provements in By are predicted with simula-
Figure 3: STEP predicted By NBI only (dashed) and

NBI+ECH (solid) heating P,,, = 10 MW (blue) and
Py =20 MW (green) with EPED boundary (black).

tions when 0 is decreased from 6 = —0.2 to
0 = —0.6. For the 50/50 mix of NBI+ECH
heating, the STEP prediction of By becomes
U-shaped at Py, = 20 MW with positive-6 with By s—_¢ ~ By 5-0.6- The increase in By at
negative-0 compared to positive-0 is stronger for NBI+ECH than with NBI only. However, all
values of By are lower than the NBI only prediction.

The transport and integrated modeling predictive capabilities of the negative-8 scenario are
examined in which TGYRO predicts stronger n. and T; gradients in negative-8 compared to
positive-8, consistent with the experiment. TGLF predicts that increasing electron temperature
gradient scale length reduces the particle transport in negative-8. This suggests that electron
heating may not degrade core plasma particle confinement the way positive-0 does. The pre-

dicted confinement improvement at negative-d from core-pedestal modeling is stronger in high



48th EPS Conference on Plasma Physics 04.101

power electron heated plasmas.
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