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Introduction

Non-thermal plasmas play a significant role in a large set of applications, ranging from the
industrial and aerospace fields to agriculture and medicine [1]. One of the most common tech-
niques to obtain a non-thermal plasma is through a Dielectric Barrier Discharge (DBD) [2].
Although being well established devices, the operation of DBD reactors is governed by a num-
ber of complex physical mechanisms, that are worth investigating. In this work we describe the
implementation of a drift-diffusion model for the simulation of a volumetric DBD reactor. The
aim of the model is to follow the temporal and spatial evolution of the main neutral and charged
species produced in the discharge. Finally, we introduce a numerical treatment of the electron
dynamics based on coupling the Poisson equation with the Boltzmann relation, and compare

the obtained results against a classic full drift-diffusion approach.

Model formulation

Considering a plasma constituted by a given number n; of species, and assuming that the
validity conditions of a fluid model are met (i.e., the characteristic macroscopic length L. >
mean free path A., and the characteristic macroscopic time z. >> mean collision time 1/v,), the

foundation of the model is constituted by the drift diffusion equations for each species:
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in which N and D; are the number density and the diffusion coefficient of the s—th species,
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respectively. The average drift velocity (v), = (g;/|gs|)UsE is defined via the product between
the electric field and the electrical mobility u, of the species, accounting for the sign of the
species charge ¢,. The right-hand side term in (1) takes into account of the elementary processes
in the plasma (i.e., thermal ionisations, recombinations, attachments).

An electrostatic formulation is used to describe the electric field behaviour. That is, assuming
a conservative electric field, the governing equation in the plasma region is given by the Poisson
equation:

vip=-L, @)
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where p is the electric charge volume density and &y the vacuum dielectric constant. The charge
density p depends on the space distribution of the ions and electrons number densities, which

in turn are governed by the drift diffusion equations (1):

p=Y 4N, 3)
s=1

Equations (1) for all the species of interest, coupled with (2), constitute a model that can
be used to evaluate the evolution of a discharge over time. We will call this model Full Drift
Diffusion (FDD). However, it can be observed that, among the species in the plasma, electrons
exhibit markedly larger swarm parameters. As a result, numerical schemes (most notably ex-
plicit numerical schemes) that solve this problem are bound to use small time integration steps
determined by the fast dynamics of the electrons. One possible way around this limitation is to
consider that electrons adapt instantaneously to the local value of the electric potential, accord-
ing to the Boltzmann distribution. Consequently, assuming a plasma constituted by ngy heavy

species, the charge density can be expressed as:

ny _
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where T, .v = kpT, /e is the electron temperature in eV, ¢y the electric reference potential and
N, the background electron number density. The model presented in this paper is therefore
constituted by the equations for heavy species, coupled with the non-linear Poisson equation in
which the charge density is evaluated by means of (4). This second approach will be hereafter
referred to as Boltzmann Drift Diffusion (BDD). According to this approach, the electron num-
ber density and electric potential are evaluated by means of a steady state formulation, driven
by the time evolution of the heavy species. Applying (4) on a finite domain does not guarantee

the global charge neutrality. Indeed, an additional condition has to be enforced:

sz=Qs+/VP(N1,N2,-~-,NnH,QD,fpo,Ne,o)dV=0, )

where Qy is the charge deposited on the walls. Equations (1) and (2) have been discretised by
means of a cell-centred finite volume method. Convective fluxes are dealt with by means of a
first order upwind scheme, and the explicit Euler method has been adopted for time integration.
Assuming a 1D formulation of the problem with a space discretisation Ax, the integration time

step At is subject to the stability condition:

Ax
(2Dy/Ax) +[{v)| |-

Ar < min (6)
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It is evident that condition (6), when applied to the BDD approach, becomes less restrictive,
since only the swarm parameters of the heavy species are taken into account. On the other hand,
a single time step using BDD requires a considerably higher computational effort, since the
non-linear Poisson equation has to be solved. In this work, this task is carried out by means of
a Newton-Raphson algorithm. The reference potential ¢ is adjusted to satisfy the condition (5)

using a bisection method.

A simple study case: ambipolar diffusion
To validate the code a simple case of ambipolar diffusion is simulated. Ambipolar diffusion
has been chosen because, under certain conditions (I', =1I';, N, &= N; = N and no external field)

the electric field can be expressed using an analytical formula [3]:

g_ Di=D. VN
Me + H; N~

For the sake of simplicity chemical reactions are not included, considering only two types

(7

of particles: electrons and ionised Argon. A one dimensional computational domain has been
considered, discretised by means of 101 points, with a total length of 0.1 mm. The initial number
densities of the species follow a Gaussian distribution. In the simulation constant diffusivity
and mobility were assumed, using the values reported in table 1 that, according to the Einstein

relation D, /U, = T, ¢v lead to an electron temperature of 0.2 eV.

He Hi D, D;
50x1072 1.5%x107% 1.0x1071 50x10°°

Table 1: Swarm parameters used in the simulations. Mobilities are in m>V~'s~! and diffusion
2.1

coefficents in m~s™
Results and discussion

As shown in Fig. 1 the results obtained with the two approaches considering constant param-
eters are in good agreement with the analytical solution. Moreover, the ion fluxes calculated
using FDD and BDD method are nearly equal, as shown in Fig. 2.

It’s important to notice that the BDD approach allows adopting time steps of ~ 10~ s com-

pared to ~ 10713 s, leading to a speedup of 20-100 times, depending on the simulation condi-

tions.
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(a) Results using BDD approach with a time (b) Results using BDD with a time step
step At = 1x 107135 At= 1x10"s

Figure 1: Comparison between analytical solution and simulation results after 0.1 us with constant

parameters
18
3 x10 ‘ ‘
* ion flux BDD
. f%‘* ion flux FDD |
# *
¥ *
* *
1ir ¥ *
a ¥ ,
&2 # L
% *
[ % ¥
1t % i
% *
% *
** ;:6
2F Sl
3 ‘ ‘ ‘ ‘
0 0.02 0.04 0.06 0.08 0.1
Position (mm)
Figure 2: Comparison between fluxes calculated using BDD e FDD approach
Conclusion

In this paper, a novel drift-diffusion model for plasma analysis has been proposed. The model
uses the Boltzmann relation to evaluate the spatial distribution of electrons. A simple case of
ambipolar diffusion has been considered for validation, using the analytical solution and the
results of a conventional drift diffusion model (FDD) as terms of comparison. The results have
shown a good agreement. The BDD formulation is obviously not able to capture the fast dy-

namics of the electrons, but it allows to increase the time step by 3-4 orders of magnitude.
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