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1. Introduction 

Real-time control of a safety factor (q) profile and a normalized beta (N) has been studied 

in various tokamaks because they strongly affect the confinement performance and MHD 

stability of fusion plasmas. Especially for advanced tokamak scenarios, it is very important to 

tailor the q profile to have a weak or negative magnetic shear in the inner half of the plasma 

since the anomalous transport can be reduced and, in some cases, the internal transport barrier 

(ITB) can be produced. In such plasmas, a large amount of plasma current is driven by self-

generated bootstrap current, and therefore, the q profile and N tend to be strongly linked. In 

addition, the confinement characteristics can change during the discharges. Due to these 

difficulties, the design of the q profile and N controller for the advanced tokamak is very 

challenging. 

In this work, an integrated q profile and N control for JT-60SA is developed using 

reinforcement learning. A neural network (NN) based controller is trained through trial-and-

errors that are performed in the simulation using an integrated transport code more than one 

million times. The integrated transport code RAPTOR [1] is used because it enables us to run 

rapid predictive simulations. In our previous work, it was shown that the NN controller trained 

for the control of the ion temperature gradient using reinforcement learning could be robustly 

used even if the controlled parameter had a wide range of response characteristics [2]. In this 

work, an integrated q profile and N controller that can be used in advanced plasmas with a 

wide range of ITB strength has been developed. It should not be suitable to set the q profile 

itself as a target value since the q profiles that are feasible with a finite set of actuators will be 

different if confinement characteristics are different. Therefore, the target of the minimum value 

of the q profile (qmin) is set as a target value instead. With this target, the constraint is relaxed 

while the control of the plasma performance, such as stability and confinement characteristics 

is maintained. 

Since the experiments in JT-60SA have not yet started, the validity of the trained NN 

controller is checked using the other integrated code TOPICS [3]. TOPICS is often used for 

predictive simulations for JT-60SA. Although both RAPTOR and TOPICS solve 1D transport 
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equations, they use different physics models. For example, they use different heating and 

current drive models and anomalous transport models. Therefore, if the trained NN is tested 

using TOPICS, its validity for the plasmas whose response characteristics are different from 

the plasmas used in the training can be checked. If it is valid, it is expected to be applicable to 

the real experiment. 

2. Training using RAPTOR code 

The controller is trained to control qmin and N by neutral beams (NBs) and electron cyclotron 

(EC) waves. JT-60SA will be equipped with on-axis and off-axis negative ion-based neutral 

beams (on-axis NNB and off-axis NNB), and three groups of positive ion-based neutral beams 

which will be injected in co-current tangential (co-PNB), counter-current tangential (ctr-PNB) 

and perpendicularly (perp-PNB). The input parameters of the NN are defined as in the state si 

= [ti, q(ti, ρ), q(ti-1, ρ), Te(ti, ρ), Pact(ti), βN(ti), 𝛽𝑁̅̅̅̅ (𝑡𝑖), βN
limit(ti), θFlattop], where Pact(ti) = [PEC, 

Pon-NNB, Poff-NNB, Pco, Pctr, Pperp] is the heating power of EC and each group of NBs,   

𝛽𝑁̅̅̅̅ (𝑡𝑖)=0.8𝛽𝑁̅̅̅̅ (𝑡𝑖−1)+0.2βN(ti-1) is the smoothed value of the past βN data, and Pact(ti+1) is the 

output parameter of the NN. The smoothed βN is included in the state since it can be used as a 

control target to reduce the oscillation in βN control. The parameters included in the state are 

chosen such that the NN can observe the present response characteristics of the q profile and 

βN to the heating and current drive by EC and NBs. In reinforcement learning, the interaction 

of the controller and the plasma is modelled as a transition of state si to the state at the next 

control time step si+1 due to an output of the controller, Pact(ti). The NN is trained using a 

parameter called a reward which evaluates the control result associated with the state transition 

at each time step. The reinforcement learning algorithm tries to maximize a sum of rewards 

obtained in a series of time-dependent simulations. 

 

 
Fig. 1 Definition of five terms of rewards. A reward at each time step is a sum of these terms. 

Rewards of r1 and r3 are added to encourage qmin and N to be controlled in each target range shown 

in cyan. Rewards of r2 and r4 are given to encourage to find a stationary phase. The last term r5 is 

added to avoid strongly reversed shear plasmas or current hole plasmas. The green curves and yellow 

curves denote the rewards in flat-top phase and ramp-up phase, respectively. 
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An ad-hoc anomalous transport model which describes the confinement improvement due to 

low magnetic shear is used. To train against plasmas with a wide range of confinement 

characteristics, the parameters used in this model are randomly changed at the beginning of each 

time-dependent simulation. 

The design of the reward is a key to realize the control that fulfills the requirements. The 

control targets are not defined as specific values for qmin and N but as ranges of those values. 

This is because there is no set of qmin and N values that can be realized for all the plasmas used 

in the training. To realize advanced plasmas, the lower limit of N target is set to 2.4 and that 

of target qmin is set to 1.5. In addition, since higher qmin and N might cause confinement 

degradation and/or MHD instabilities, the upper limit of N target is set to 3.0 and that of target 

qmin is set to 2.0. Based on those targets, the reward is defined as shown in Fig. 1.  

In the time-dependent simulation in training, the current ramp-up from 0.9 MA to 1.9 MA 

for 3.5 s followed by the current flat-top that lasts for 45 s in JT-60SA are simulated. The control 

time step is 100 ms, therefore, each simulation consists of 485-time steps of simulation. After 

more than two million time steps of training, the average of the sum of rewards in one time-

dependent simulation exceeds 1000. Using the trained NN, qmin and N can be stably controlled 

in target ranges for most cases simulated in RAPTOR. Nonetheless, the control for plasmas 

 
Fig. 2 Control results using the trained NN in TOPICS. Bohm/gyro-Bohm model is used. Left 

column shows the time evolution of (a) a reward, (b) qmin and qmax, (c) qmin and qmax, (d) Ip, IBS 

and INI, (e) N and H98, and (f)input powers of EC and NBs. The hatched regions in (b) and (e) 

show the range of rewards associated with qmin and N, respectively. Right column shows the 

snapshots of (g) q profiles and (h) Te profiles at the times shown by dashed lines in left column. 

48th EPS Conference on Plasma Physics P1a.104



with strong ITB is challenging. In such plasmas, qmin and N are kept within the target ranges 

but those values are oscillated in time scale more than 20 s. 

3. Validation using TOPICS code 

The trained NN is tested in the simulation using the integrated code TOPICS. In TOPICS, 

CDBM model or Bohm/gyro-Bohm model are used to simulate strong ITB plasmas or weak 

ITB plasmas. As shown in Fig. 2, qmin and N are stably controlled for plasmas with Bohm/gyro-

Bohm model. Although qmin is 2.2 and slightly higher than the target range, for weak ITB 

plasmas, the trained NN can realize stable control of qmin and N. Note that the models used in 

TOPICS are different from those used in the training. Another simulation with CDBM shows a 

limitation of qmin control in the strong ITB plasmas. Although both qmin and N are stably 

controlled, qmin is higher than the target range.  

4. Summary 

A system for q profile and βN control in JT-60SA has been developed using reinforcement 

learning. This system controls qmin and βN in target ranges that correspond to advanced plasmas. 

This system is trained in more than two million times trials in RAPTOR simulations. In training, 

the model parameters that determine confinement property are randomly changed shot-by-shot. 

As a result of this randomization, the trained system realizes a stable control of qmin and βN for 

weak ITB plasmas. This is confirmed by the simulation using TOPICS. Even though there are 

many differences in physics models and assumptions between RAPTOR and TOPICS, the 

trained system can achieve the stable control of qmin and βN. This is an encouraging result for 

the application of the trained system to real experiments. However, at the same time, the issues 

in the development of the control system using reinforcement learning are found. In this work, 

the NN is trained for plasmas with a wide range of confinement characteristics. This setup 

makes it difficult to set a specified control target and it is shown difficult to achieve good control 

in challenging circumstances such as control in strong ITB plasmas. It will be required to train 

against plasmas that have confinement characteristics that are relevant to the target plasma 

scenarios. 
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