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1. Introduction

Real-time control of a safety factor (q) profile and a normalized beta (Bn) has been studied
in various tokamaks because they strongly affect the confinement performance and MHD
stability of fusion plasmas. Especially for advanced tokamak scenarios, it is very important to
tailor the q profile to have a weak or negative magnetic shear in the inner half of the plasma
since the anomalous transport can be reduced and, in some cases, the internal transport barrier
(ITB) can be produced. In such plasmas, a large amount of plasma current is driven by self-
generated bootstrap current, and therefore, the q profile and Pn tend to be strongly linked. In
addition, the confinement characteristics can change during the discharges. Due to these
difficulties, the design of the q profile and By controller for the advanced tokamak is very
challenging.

In this work, an integrated q profile and Pn control for JT-60SA is developed using
reinforcement learning. A neural network (NN) based controller is trained through trial-and-
errors that are performed in the simulation using an integrated transport code more than one
million times. The integrated transport code RAPTOR [1] is used because it enables us to run
rapid predictive simulations. In our previous work, it was shown that the NN controller trained
for the control of the ion temperature gradient using reinforcement learning could be robustly
used even if the controlled parameter had a wide range of response characteristics [2]. In this
work, an integrated q profile and B~ controller that can be used in advanced plasmas with a
wide range of ITB strength has been developed. It should not be suitable to set the q profile
itself as a target value since the q profiles that are feasible with a finite set of actuators will be
different if confinement characteristics are different. Therefore, the target of the minimum value
of the q profile (qmin) is set as a target value instead. With this target, the constraint is relaxed
while the control of the plasma performance, such as stability and confinement characteristics
1s maintained.

Since the experiments in JT-60SA have not yet started, the validity of the trained NN
controller is checked using the other integrated code TOPICS [3]. TOPICS is often used for
predictive simulations for JT-60SA. Although both RAPTOR and TOPICS solve 1D transport
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equations, they use different physics models. For example, they use different heating and
current drive models and anomalous transport models. Therefore, if the trained NN is tested
using TOPICS, its validity for the plasmas whose response characteristics are different from
the plasmas used in the training can be checked. If it is valid, it is expected to be applicable to
the real experiment.

2. Training using RAPTOR code

The controller is trained to control gqmin and Bn by neutral beams (NBs) and electron cyclotron
(EC) waves. JT-60SA will be equipped with on-axis and off-axis negative ion-based neutral
beams (on-axis NNB and off-axis NNB), and three groups of positive ion-based neutral beams
which will be injected in co-current tangential (co-PNB), counter-current tangential (ctr-PNB)
and perpendicularly (perp-PNB). The input parameters of the NN are defined as in the state s;
= [ti, q(ti, p), q(ti-1, p), Te(ti, p), Pact(ti), Pn(ti), By (t1), BN"""(ti), OFtariop], Where Paci(ti) = [Prc,
Pon-nnB, PoftnnB, Peo, Petr, Pperp] is the heating power of EC and each group of NBs,
B (t)=0.8By (t;—1)+0.2Bxn(ti1) is the smoothed value of the past Pn data, and Pau(tir1) is the
output parameter of the NN. The smoothed PBx is included in the state since it can be used as a
control target to reduce the oscillation in Bn control. The parameters included in the state are
chosen such that the NN can observe the present response characteristics of the q profile and
BN to the heating and current drive by EC and NBs. In reinforcement learning, the interaction
of the controller and the plasma is modelled as a transition of state s; to the state at the next
control time step si+1 due to an output of the controller, Pa(ti). The NN is trained using a
parameter called a reward which evaluates the control result associated with the state transition
at each time step. The reinforcement learning algorithm tries to maximize a sum of rewards

obtained in a series of time-dependent simulations.
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Fig. 1 Definition of five terms of rewards. A reward at each time step is a sum of these terms.
Rewards of r; and 13 are added to encourage qmin and B to be controlled in each target range shown
in cyan. Rewards of 12 and r4 are given to encourage to find a stationary phase. The last term 15 is
added to avoid strongly reversed shear plasmas or current hole plasmas. The green curves and yellow

curves denote the rewards in flat-top phase and ramp-up phase, respectively.
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An ad-hoc anomalous transport model which describes the confinement improvement due to
low magnetic shear is used. To train against plasmas with a wide range of confinement
characteristics, the parameters used in this model are randomly changed at the beginning of each
time-dependent simulation.

The design of the reward is a key to realize the control that fulfills the requirements. The
control targets are not defined as specific values for qmin and Bn but as ranges of those values.
This is because there is no set of qmin and Bx values that can be realized for all the plasmas used
in the training. To realize advanced plasmas, the lower limit of By target is set to 2.4 and that
of target qmin 1s set to 1.5. In addition, since higher qmin and P might cause confinement
degradation and/or MHD instabilities, the upper limit of P target is set to 3.0 and that of target
gmin 18 set to 2.0. Based on those targets, the reward is defined as shown in Fig. 1.

In the time-dependent simulation in training, the current ramp-up from 0.9 MA to 1.9 MA
for 3.5 s followed by the current flat-top that lasts for 45 s in JT-60SA are simulated. The control
time step is 100 ms, therefore, each simulation consists of 485-time steps of simulation. After
more than two million time steps of training, the average of the sum of rewards in one time-

dependent simulation exceeds 1000. Using the trained NN, qmin and Bx can be stably controlled
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Fig. 2 Control results using the trained NN in TOPICS. Bohm/gyro-Bohm model is used. Left
column shows the time evolution of (a) a reward, (b) qmin and qmax, (C) Pqmin aNd Pgmax, (d) Iy, Iss
and Iy, (¢) Pn and H98, and (f)input powers of EC and NBs. The hatched regions in (b) and (¢)

show the range of rewards associated with qmin and B, respectively. Right column shows the
snapshots of (g) q profiles and (h) T. profiles at the times shown by dashed lines in left column.

in target ranges for most cases simulated in RAPTOR. Nonetheless, the control for plasmas



48th EPS Conference on Plasma Physics Pla.104

with strong ITB is challenging. In such plasmas, qmin and Bx are kept within the target ranges
but those values are oscillated in time scale more than 20 s.

3. Validation using TOPICS code

The trained NN is tested in the simulation using the integrated code TOPICS. In TOPICS,
CDBM model or Bohm/gyro-Bohm model are used to simulate strong ITB plasmas or weak
ITB plasmas. As shown in Fig. 2, qmin and B are stably controlled for plasmas with Bohm/gyro-
Bohm model. Although qmin is 2.2 and slightly higher than the target range, for weak ITB
plasmas, the trained NN can realize stable control of qmin and Bn. Note that the models used in
TOPICS are different from those used in the training. Another simulation with CDBM shows a
limitation of qmin control in the strong ITB plasmas. Although both gmin and By are stably
controlled, qmin is higher than the target range.

4. Summary

A system for q profile and PBn control in JT-60SA has been developed using reinforcement
learning. This system controls qmin and P in target ranges that correspond to advanced plasmas.
This system is trained in more than two million times trials in RAPTOR simulations. In training,
the model parameters that determine confinement property are randomly changed shot-by-shot.
As a result of this randomization, the trained system realizes a stable control of qmin and Bn for
weak ITB plasmas. This is confirmed by the simulation using TOPICS. Even though there are
many differences in physics models and assumptions between RAPTOR and TOPICS, the
trained system can achieve the stable control of qmin and Bn. This is an encouraging result for
the application of the trained system to real experiments. However, at the same time, the issues
in the development of the control system using reinforcement learning are found. In this work,
the NN is trained for plasmas with a wide range of confinement characteristics. This setup
makes it difficult to set a specified control target and it is shown difficult to achieve good control
in challenging circumstances such as control in strong ITB plasmas. It will be required to train
against plasmas that have confinement characteristics that are relevant to the target plasma

scenarios.
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