48th EPS Conference on Plasma Physics Pla.118

Ideal core MHD stability in operational scenarios in JT-60SA

R. Coelho!!l, J. Garcia 21, F. Liu 2!

[1]  Instituto de Plasmas e Fusdo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001
Lisboa, Portugal
[2]  CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France

I — Introduction

The scientific work programme of the JT-60SA tokamak foresees several operational
scenarios [1] at normalised plasma beta close or larger than 3, ranging from full Ip inductive
at 41MW heating power with different heights in the pedestal density, hybrid like scenarios
with 37MW of heating power and strongly reversed shear scenarios (heating power larger
than 30MW) in a full non-inductive current operation. While on the pedestal it is largely
anticipated that all scenarios are peeling-ballooning (PB) unstable, the core MHD stability is
less straightforward except when the plasma scenarios are sawtoothing. In particular, large
pressure gradients may give rise to local ballooning-infernal or kink modes resonant with
magnetic surfaces close to the q=1 magnetic surface or possible minima in the safety factor g-
profile. In this work we investigate the ideal core MHD stability of the foreseen scenarios and
present a comprehensive analysis of the MHD spectra characteristic from each scenario. The
background plasma and equilibria stem from modelling done using the CRONOS suite using
dedicated models for core particle and heat transport e.g. GLF23 and CDBM [2,3]. Such
models lack of some characteristics expected to be important in JT-60SA, e.g. the impact of
electromagnetic effects on turbulence, yet they were used as a first step towards a full

prediction of scenarios in JT-60SA.

IT — Modelled plasma scenarios

The operational scenarios address fundamentally fully inductive scenarios at low (Scenario 2)
and high (Scenario 3) electron plasma density, a hybrid scenario (Scenario 4) and an advanced
scenario with strong core magnetic shear reversal (Scenario 5). The plasma current and

toroidal magnetic field are summarized in Table I

Scenario 2 Scenario 3 Scenario 4 (CDBM) | Scenario 5
Ip/Br | 5.5MA/225T | 53MA/2.05T | 3.6MA/2.28T 23MA/1.72T

Table I — Summary plasma current and toroidal magnetic field for the scenarios

Figure 1 summarizes the four scenarios showing both the equilibrium plasma cross section

and flux surfaces as well as some fundamental radial plasma profiles. With exception of

1



48th EPS Conference on Plasma Physics Pla.118

Scenario 5, the g-profile hovers around 1 about the magnetic axis. Although scenarios 2 and 3
capture the characteristic post-sawtooth crash flattening of the g-profile around 1, for scenario

3 a slight shear reversal with a double q=1 surface exists at mid-radius.
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I1I — Stability analysis

The stability analysis was performed using the EQSTABIL workflow developed
within EUROfusion [4] and implemented using the IMAS modelling infrastructure [5]. The
high resolution equilibria were obtained using either the HELENA [6] or CHEASE [7] codes
and the ideal MHD stability was calculated using the ILSA [8] code. In scenario 2 the
stability is dominated by the g=1 magnetic surface with kink unstable modes with maximum
growth rate for toroidal mode number N=8 (see Figure 2-left). In addition, all modes
essentially resonate at the g=1 magnetic surface, evidenced both by the
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Figure 2 - Normalised growth rate normalized to the Alfven frequency dependence with toroidal mode
number (left) and radial peak location of the eigenfunction for each toroidal mode number (Nio).

dominant poloidal harmonic (m) of the eigenfunction (always m=n) and by the “radial”

location of the peak mode amplitude, progressively closer to the q=1 surface as the toroidal
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mode increases (see Figure 2-right). Considering scenario 3, it features a double magnetic
surface q=1 located at p,o1orm~0.495/0.534, on axis q(0)=1.001 and the minimum safety
factor qmin(0.518)=0.999 (see Figure 3-right). With the modes located within the qmi» and
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Figure 3 - Normalised growth rate dependence with toroidal mode number (left) and radial peak
location (right) of the eigenfunction for each toroidal mode number (Ni»).

outer g=1 magnetic flux surfaces as shown in Figure 3-right, shear stabilization contribution is
minimised thus enabling increasing growth rate with toroidal mode number. Although the
highest pressure gradient (with the exception of the pedestal region) is also within the same
qmin TEgION, it is possible that it’s nonetheless insufficient to drive infernal modes.

In scenario 4, there is an ITB in the ion energy channel concomitant with the large
pressure gradient at ppoinorm=0.56. As expected, with q(0)<1, the n=1 mode is kink unstable
and one quickly transits to a family of modes that are clearly aligned to the highest pressure
gradient region, as illustrated in Figure 4. Other unstable modes at lower growth rate (also
ballooning character) are identified, resonant between the q=1 and highest pressure gradient
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Figure 4 - Normalised growth rate dependence with toroidal mode number (left) and radial peak
location of the eigenfunction for each toroidal mode number (Ny.). Highest pressure gradient and q=1

radial position are also indicated.

surface and with perturbed radial velocity slightly odd about the latter surface.
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Finally, in scenario 5 the positive shear region is as anticipated MHD unstable, with
strongly unstable ballooning modes with highest mode amplitude region pyoimorm~0.62 as
observed in Figure 5. Although the pressure gradient at the modes location is only 55% of the
peak pressure gradient value at mid-radius (~68kPa/Wb at p,imorm~0.5), magnetic shear is
no longer zero which grants access to the unstable region. No low-n infernal type modes are

observed close to the qmin magnetic surface.
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Figure 5 - Normalised growth rate dependence with toroidal mode number (left) and radial peak
location of the eigenfunction for each toroidal mode number (Nyw,). Highest pressure gradient and qmin
radial position are also indicated.

IV — Conclusions

The ideal/internal MHD stability of the JT-60SA operational scenarios obtained from
modelling done using the CRONOS suite using dedicated models for core particle and heat
transport e.g. GLF23 and CDBM was addressed. It was found that while the fully inductive
scenarios are mostly kink unstable in the vicinity of the q=1 surface, as large pressure
gradients become more evident in the advanced scenarios, ballooning like modes become

strongly unstable, with occasionally more than one unstable branch being identified.
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