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In Ref. [1], a method for quasi-geometric integration of the guiding-center equations in general

3D toroidal fields was introduced. Realized in the GORILLA code [2], this method reduces

the set of guiding-center equations to a linear ODE set with piece-wise constant coefficients by

approximating the guiding-center Lagrangian L with a continuous piecewise linear function of

the coordinates,

L(L) =
eα

c
A∗(L)i ẋi− J⊥φ̇ −H(L) with (1)

A∗(L)i = A(L)
i + v‖

(
Bi

ωc

)(L)

and H(L) = ω
(L)
c J⊥+

mαv2
‖

2
+ eαΦ

(L). (2)

Here, xi, v‖, J⊥ and φ are the independent phase-space variables which are, respectively, the

guiding-center position, the parallel velocity, the perpendicular adiabatic invariant and the gyro-

phase. Further, Ai, Bi, ωc and Φ are the covariant components of the vector potential and the

magnetic field, the cyclotron frequency and the electrostatic potential. Charge eα and mass mα

of the considered species α enter ωc = eαB/(mαc) together with the magnetic field modulus

B =
√

BiBi and the speed of light c. Superscripts (L) are used for quantities being piecewise

linear functions of the coordinates. In GORILLA, this special representation of the electro-

magnetic field is achieved by performing a 3D linear interpolation within tetrahedral cells which

can be built on the basis of the spatial discretization of edge plasma codes, in particular, of the

kinetic neutral code EIRENE. Thus, direct data exchange with these codes is facilitated. Since

this method is not limited by field topology, its primary target is to model edge plasmas of

toroidal devices with a general 3D geometry.

Since publication of Ref. [1], where the computation domain for guiding-center orbits was

limited to the plasma core, GORILLA’s field linearization approach has been extended to the

scrape-off layer (SOL). In the particular case of SOLEDGE3X-EIRENE [3], a 2D triangular

mesh is provided and the given triangles are extruded in the toroidal direction to create slices
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of triangular prisms. Subsequently, each prism is split in a special manner into three tetrahedra.

Specifically, the poloidal magnetic flux is used as as a key orientation quantity for the splitting

mechanism to obtain a 3D tetrahedral grid that is consistent with GORILLA’s logics and the

utilized piecewise linear representation of the electro-magnetic field. Fig. 1 shows 3 keV D ion

guiding-center orbits being projected to the poloidal ϕ = 0 plane in the axisymmetric WEST

configuration. The guiding-center orbits are started from several poloidal flux surfaces (starting

positions are indicated with points) with a pitch parameter v‖/v = 0.9 and are, further, evalu-

ated by GORILLA in 3D utilizing the 2D triangular discretization of SOLEDGE3X-EIRENE.

The figure clearly shows orbits starting in the plasma core and being confined to drift-surfaces

(green), orbits starting in the SOL and being lost to the wall or to the divertor (blue) and a tran-

sient orbit starting in the plasma core, further drifting to the SOL, and subsequently being lost

(red).

Figure 1: Poloidal projection (ϕ = 0) of guiding-center orbits of 3 keV D ions in the axisymmetric WEST

tokamak configuration. The guiding-center orbits are evaluated in 3D with GORILLA utilizing the 2D triangular

mesh of SOLEDGE3X-EIRENE. The orbit starting positions are indicated with points.

In GORILLA, guiding-center orbits are traced using a time-like orbit parameter τ . Originally,

the integration method has been realized for the approximate, lowest order time dynamics such

that the shape of the orbits in the phase-space was corresponding to a Hamiltonian system but

the evolution in time could lead to minor artifacts in dwell time averages which are required for

the computation of the spatial distribution of macroscopic parameters (density, plasma flows,
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pressure tensor). In this present work, the accurate time dynamics outlined in Ref. [1],

dt
dτ

=
eα

mαc
ε

i jk
(

Bi

ωc

)(L)
∂A∗(L)k

∂x j , (3)

has been realized in GORILLA resulting in orbits fulfilling the Hamiltonian properties in the

whole extended phase-space. The correctness of the novel time dynamics is implicitly verified

by computing the 1st Poincaré invariant J in the extended phase-space, which is given by

J =
1

2π

∮
Λν dzν , (4)

where zν = zν(τ) =
(
xi,v‖,φ ,J⊥, t

)
is the set of coordinates in the extended phase-space and

Λν = Λν(z(τ)) =
(

eαc−1A∗(L)i ,0,J⊥,0,−H(L)
)

is the extended symplectic co-vector of the

related piecewise linear guiding-center Lagrangian of Eq. 1, L(L) = Λν żν .
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Figure 2: Relative error of the 1st Poincaré invariant as a function of the normalized orbit parameter τ/τ̃ .

In Fig. 2 the relative error of the 1st Poincaré invariant is depicted as a function of the nor-

malized orbit parameter τ/τ̃ , where τ̃ corresponds to the elapsed (time-like) value in which a

strongly passing particle is traced for one toroidal field period. The 1st Poincaré invariant is

computed by following a closed phase-space contour which is parameterized by ξ ∈ [0,2π]

and which is initially located in the poloidal plane ϕ = 0 of the coordinate space. The ini-

tial values of the remaining extended phase-space coordinates are t(τ = 0) = 0, φ(τ = 0) = 0,

J⊥(τ = 0) = J̄⊥(1+ a⊥ cosξ ) and H(τ = 0) = H̄(1+ aH sinξ ). The cases of a⊥ = 0 and/or

aH = 0 correspond to constant J⊥ and/or constant H hyper-surfaces. In the zeroth order time

dynamics J is preserved in the usual phase-space on constant H hyper-surfaces. In contrast,
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for non-constant H in the extended phase-space, J is only poorly conserved in the zeroth order

time dynamics. However, J is strongly conserved when using the recently implemented correct

(Hamiltonian) time dynamics. The same conservation behavior of J is true also for the con-

jugated pair φ and J⊥. In Fig. 3 a closed contour of starting positions of the guiding-center

orbits xi(τ = 0), which is utilized for the evaluation of 1st Poincaré invariant, as well as the time

evolution of this contour can be seen.

The conservation of the 1st Poincaré invariant in the extended phase-space is not only a prereq-

uisite for an artifact-free computation of distribution function moments which is needed specif-

ically for the computation of particle and flow densities, but furthermore a strong numerical

evidence that the integration method itself is symplectic, in fact.

Figure 3: Time evolution of a contour of guiding-center positions utilized for the evaluation of the 1st Poincaré

invariant.

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium, funded by

the European Union via the Euratom Research and Training Programme (Grant Agreement No

101052200 - EUROfusion). Views and opinions expressed are however those of the author(s)

only and do not necessarily reflect those of the European Union or the European Commission.

Neither the European Union nor the European Commission can be held responsible for them.

References
[1] M. Eder et al, Physics of Plasmas 27, 122508 (2020), https://doi.org/10.1063/5.0022117

[2] M. Eder et al, zenodo (2021), https://doi.org/10.5281/zenodo.4593661

[3] H. Bufferand et al, Nucl. Fusion 61, 116052 (2021), https://doi.org/10.1088/1741-4326/ac2873

48th EPS Conference on Plasma Physics P1b.112


