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Introduction The radial correlation reflectometry (RCR) is a widely used technics that provides

information on plasma turbulence characteristics. Probing plasma with multiple frequencies can

simply determine the turbulence radial correlation length by the difference in the cut-off posi-

tions where the correlation of the signals disappears. It turned out that this approach is not

always correct [1,2]. That stimulated theoretical investigation of the RCR and resulted in the

non-linear theory of the RCR in 1D [3] and 2D [4] models. According to the developed mod-

els in the case of strong turbulence the signal spatial correlation length is a function of both

the turbulence correlation length and its amplitude. Another method of the reflectometry signal

analysis was developed for extracting information on the turbulence spectrum thus the turbu-

lence amplitude [5]. This approach is based on the relation between the radial wave-number

spectrum of the density fluctuations and the phase fluctuation wave-number spectrum of a re-

flectometer signal [6]. Theoretically the two methods can be combined for obtaining the infor-

mation on both the turbulence amplitude and its radial correlation length under the conditions

when the non-linear regime of the RCR takes place. This paper is devoted to the demonstration

and verification of the possibility to use the two approaches of the RCR signal interpretation

simultaneously. On the base of 2D simulation of a RCR experiment it is shown that this method

allows us to resolve the turbulence amplitude and the turbulence radial correlation length.

Phase spectrum analysis Description of the phase variation spectrum analysis for O-mode

probing in the RCR experiment is provided in this section. This method was described in details

in [6] under the Born approximation. Since we are aimed at the RCR analysis in the strongly

non-linear regime, the WKB approach will be used instead of the Born approximation. We con-

sider here the slab plasma model. The Cartesian coordinates are chosen as follows: x is the

direction of plasma inhomogeneity, a probing beam is launched along this axis; z axis corre-

sponds to lines of external magnetic field; y axis is perpendicular to the x and z and stands for

the poloidal coordinate. Also a linear density profile will be used in this model n(x) = nmax
x
L . It

will be convenient to express the density profile in terms of the critical density nc = nc (ω) and

the cut-off position xc = xc (ω,L) for a given probing frequency ω , n(x) = nc
x
xc

. In the WKB
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approach the phase variation associated with the density turbulence δn(x)

δφ (xc) =−
∫ dq

2π

[
√

π
ω

c
x1/2

c

|q|1/2

δnq

nc
e−i π

4 sign(q)er f
(√

iqxc

)]
eiqxc (1)

where δnq is the Fourier transform of the fluctuations δn(x), q is the radial wave-number. It

should be mentioned that the WKB description is applicable in the case of long wavelength

turbulence. The error-function er f (
√

iqxc) in (1) is almost a constant and equals 1 for the tur-

bulence modes with q > 1
xc

. Assuming the dominant contribution to the phase variation coming

from the modes with q > 1
xc

we can neglect the error function in (1), then this equation becomes

the natural definition for the phase perturbation spectrum. The relation between the turbulence

spectrum Sδn (q) and the phase spectrum Sδφ (q)

Sδφ (q) = π
ω2

c2
xc

n2
c

1
|q|

Sδn (q) (2)

In the RCR experiment we have a set of N cut-offs from minimal to maximal values xcmin, ...,xcmax,

so the phase spectrum can be evaluated. Then the average (within the radial window {xcmin,xcmax})

turbulence amplitude is known according to the discrete Parseval’s theorem

< δnrms >{xcmin,xcmax}=
1
N

√
qmax

∑
q=qmin

Sδn (q) (3)

where qmin = 2π

xcmax−xcmin
is determined as the minimal wave number resolved by the discrete

Fourier transform and qmax = 2k (ωmax,xcmin) is the maximal wave number which fulfills the

back scattering Bragg’s rule in the considered radial window, k is the probing wave number

with the maximal frequency ωmax evaluated in the position xcmin.

CCF analysis Analysis of the cross-correlation function in the strongly non-linear regime is

described in [3,4] for both 1D and 2D plasma models correspondingly. One of the main results

in those works is the explicit expression for the signal cross-correlation function

CCF (∆xc,∆t = 0) = e
− ∆x2

c
l2ce f f (4)

with the correlation length

lce f f =
c
ω

nc

δnrms

√√
πlc

Lloc
(5)
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where Lloc =
1

n(x)
dn
dx

∣∣
x=xc

is the local plasma gradient, the turbulence radial correlation length is

defined as lc = 1√
π

∫
d∆xCCFδn (∆x), CCFδn (∆x) is the turbulence cross-correlation function in

1D model. If one considers 2D geometry δn = δn(x,y) with the slab medium approximation

n = n(x) the expression (4) remains the same, the difference is only in the turbulence cross-

correlation function definition CCFδn (∆x) =CCFδn (∆x,∆y = 0). The expression (4) is derived

in the regime with the strong phase variation < δφ 2 >≫ 1,

< δφ
2 >≈

√
π

ω2

c2 xclc
(δnrms)2

n2
c

Ln
(

xc√
πlc

)
(6)

another criterion of the CCF description is that the turbulence amplitude is not too big δnrms

nc
≪ lc

xc

so only one cut-off exists.

Numerical simulation of the RCR In order to verify the possibility of extraction the infor-

mation about the both turbulence amplitude and its correlation length in a RCR experiment

simultaneously by means of the two described methods numerical simulations of the RCR ex-

periment was fulfilled. The simulations are performed in the 2D geometry by the full-wave

code IPF-FD3D. The linear density profile (in the slab model) was used in the simulation

with L = 16.2cm, the maximal density nmax = 1× 1014cm−3. The probing frequency range

f ∈ [50,80]GHz with the frequency step ∆ f = 100MHz. This frequency range corresponds to

the set of cut-offs from xcmin = 4.9cm to xcmax = 12.4cm. The probing beam width is ρ = 2cm.

The turbulence is homogeneous, its amplitude is defined as A = δnrms

nc(80GHz) . The turbulence cor-

relation length corresponds to the definition lc = 1√
π

∫
d∆xCCFδn (∆x). The simulations are per-

formed for different turbulence amplitudes A and different turbulence spectra Sδn (q), the results

(the phase spectrum and CCF) are averaged over 1000 random turbulence realizations.

A symmetric Gaussian spectrum was used for the first set of simulations Sδn (q) ∝ exp
(
− q2

⊥
4l2

cg

)
with the correlation length lcg = 1cm. The results of the phase spectrum analysis (the amplitude

Anum) and the CCF analysis (lcnum according to (5) and taking into account measured lce f f

and known Anum) are demonstrated in the table 1. Relation of the turbulence correlation length

to the cut-off position in this case lcg
xcmax

≈ 0.08, this parameter specifies for which turbulence

amplitudes A the theory is applicable. The analogous simulations were performed in the same

model and for the same turbulence amplitude range, but for a realistic turbulence spectrum.

This spectrum is adopted from the experimental measurements on ASDEX Upgrade [7]. This

spectrum provides the turbulence correlation length lcr ≈ 0.75cm. Then the relation lcr
xcmax

≈ 0.06.

The results of the simulations with the realistic turbulence spectrum are shown in the table

2. One can conclude that the phase spectrum analysis provides pretty correct values for the
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№ A Anum < δφ 2 > lcnum, cm
1 0.013 0.010 1.9 0.48
2 0.025 0.023 7.6 0.50
3 0.050 0.045 30.4 0.86
4 0.063 0.058 47.5 1.20
5 0.076 0.070 68.5 1.32
6 0.101 0.094 121.7 1.81
7 0.126 0.120 190.2 2.29

Table 1: Simulations with the Gaussian turbulence
spectrum. Used in the simulation turbulence ampli-
tude A, the measured amplitude Anum, the mea-
sured correlation length lcnum, the averaged
squared phase variation < δφ 2 >

№ A Anum < δφ 2 > lcnum, cm
1 0.013 0.009 1.6 0.42
2 0.025 0.024 6.5 0.46
3 0.050 0.051 26.2 0.77
4 0.063 0.066 40.9 0.93
5 0.076 0.080 59.0 1.17
6 0.101 0.109 104.8 1.66
7 0.126 0.135 163.7 2.31

Table 2: Simulations with the realistic turbulence
spectrum. Used in the simulation turbulence ampli-
tude A, the measured amplitude Anum, the mea-
sured correlation length lcnum, the averaged
squared phase variation < δφ 2 >

turbulence amplitudes Anum for all the tested conditions. Taking into account the applicability

criteria for the CCF analysis the simulations number 3,4,5 for the Gaussian spectrum (table 1)

and 3,4 for the experimental spectrum (table 2) should be in agreement with the theory.

Conclusion The possibility of measuring the turbulence amplitude and the turbulence corre-

lation length simultaneously in the high-turbulence plasma scenario in a RCR experiment is

demonstrated. The phase spectrum analysis provides pretty accurate values of the turbulence

amplitude (the relative error is about 10% or smaller) for all the simulated conditions with the

different turbulence amplitudes and spectra. It is shown that the turbulence correlation length

is in quite good agreement with the prediction of the theory under the conditions when the

non-linear RCR theory is applicable. In order to extend applicability of the proposed RCR anal-

ysis method a correction coefficient (depending on A) to lc can be introduced, but this requires

analysis of more simulations and it is planned for the further work.
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