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CONTEXT AND OBJECTIVE

The ionosphere is a partially ionised gas that envelops earth and can be seen like the interface

The Generalized Rayleigh-Taylor instability (GRTI) occurs between two © ®F = —
between the atmosphere and space. Characteristics : fluids at rest, subject to external forces pointing from heavy to light sl ®f s
Figure 1: Schematic fluid. Thus, any perturbation of an interface between a heavy fluid T Kﬂ l Gerr
Hv“ of a low-density » Low degree of ionisation (with mass density p,) and a light fluid (with mass density p;) will |9 e
-~ plasma bubble rising a= ~ 0,01 result in a rising light bubble and a falling heavy spike (see Fig.2). = N\ =
S 7 in the ionosphere. nitnn : % S—
il.::ru':zn::bed S // """::f:::;’:n This p/asma bubble, _ The two destabilizing forces for ionosphere perturbations are: e o == o
it pe by creating smaller > Low temperature : T =

irlregu/arities,‘ 103 K (compare to fusion > Gravitational acceleration field: g = —ge,, Figure 2: Scheme of the unperturbed (left)
drstl{rbs the signals plasma with T = 10° K) and perturbed (right) configuration.
received from

_J > Frictional drag force with neutral fluid: Fj;) = pppyvin(Va — Vi)

satellites.

S~ » Peak of plasma density
J— around 400 km with where v;;, is the moment exchange collision frequency between ions and
Atmosphere _ 6 3 i i i N . . o
. = 10% cm neutrals, V,, Ethe velocity of the neutrals and is assumed to be N Objective: Determine the impact
constant, V;, = Upe,,. Note that we can remove the neutral velocities by £ the fricti | d F ith
including them in an effective gravity force, i.e. gerr = g — vinUo. of the nc'tlona rag force _Wlt
mm) Different irregularities can disturb high-frequency communications between the earth neutral fluid on the non linear
and satellites. The equation of the perturbed interface is given by y = n(x, t). growth of the GRTI.

m=) Radio waves are reflected, which is useful for AM radio and long-distance communication.

ANALYTICAL NON-LINEAR MODEL

Our non-linear study follow the work done by Goncharov!?! on the non-linear RTI.

Dlmensmnless non-linear system

We consider that the top of the bubble (resp. tip of the spike) is located at x = 0 and that the de With:
bubble (resp. spike) evolve with a parabolic form, d_l =¢&
T =k
n(x,t) = no(t) + n2(Dx2, §1.= ko,
where 7, corresponds to the elevation along the y-axis of the top (resp. the position of the tip) of a & = _l (68, + 1)&5 $2 = ma2/k,
bubble (resp. of a spike) and 1, corresponds to the half value of the curvature of the top (resp. of dt ¢ %
N N =7V
the tip) of a bubble (resp. of a spike). & 3 b derf
dt _
Moreover, we suppose that the fluids are incompressible (V - Vj,(;) = 0) and have an irrotational 68 =1 (N, r)E2 T=t k!]eff'
motion, so that the velocities derive from potentials ¢p(;y such as Vi) = —Vp(py. The velocity - D(&, 1) (68, — 1)2 —20r =14,
potentials for the heavier and lighter fluids obeying the Laplacian equation are assumed to be £2 66, +1 T = pn/pP1
given by: —C& [T(Zfz +1) - 1t 2&H-1 ]} _
65, — 65, -1 C =Vin/\kGess-

dn(x,y,6) = a, () cos(kx) e =m0, 3 >0,

With D(&,,7) = 12(1 —1)é2 +4(r — D& + (r — 1) and N(&,7) =36(1—1)& + 12(4+ )& + (7 —1).
$1(x,5,8) = bo(D)y + by (£) cos(kx) ek(¥=10®), y <0,

In these equations, &3, &, and &5 are, respectively, the dimensionless (with rest to the wave number and effective acceleration field)
displacement, curvature, and velocity of the top of the bubble, 7 is the dimensionless time, r is the ratio of the mass densities, and C is a
dimensionless parameter representing the collision drag over gravitational force. Following Goncharov’s ideal?, the time evolution of the
spike is obtained from the same set by making the transformations: §; > —§;, &, = =&, 7 > 1/r,and gesr > —gess-

where k is the wave number of the perturbation, with k = 2m/A. Injecting the parabolic bubble
(resp. spike) shape and the velocity potentials into the kinetical boundary conditions and Bernoulli

equations, . .
a Asymptotic Bubble Velocity
o _0¢ndn _ _ 9¢n When 7 = 400, the system converges toward an asymptotic solution where d¢,/dt = 0 and d¢3/dt = 0. This leads to a constant
at ax ax  ay’ curvature, 11, = k/6, and a constant velocity of the top of the bubble:
(m_m)a_n:m_m, o _varer ([ o0,
ox ox/)ox  ay ay b=k er c2(1+2r)?2
[ 5 (V¢n)2 - P [ + (V¢L)2
—ggff(ph p,)y +Vin(ondn — pl¢,) + fh(t) - fi(®), Classical regimel? (C ~ 0) 1 \ Collisional regimel®4! (C > 1)
i ,/lg 24 _ Gefr 24:
and then, equating coefficient of order x* (i < 2), we obtain a set of three ordinary differential v, = ZIeff 24c vp = 1/_3+—A
equations describing our non-linear evolution of the top of the bubble. 6m 1+Ar With A, = % mn ¢
hTPL
Partf‘of outr.workchzi t;ee\r;vto snr:quEa;‘tleth’:l:[:\]lgh:y co(!l.lsmna.I . 0D Mass density att = 130 s Terminal bubble velocity Terminal spike velocity
mT lgura 'Znst:] t sol ) ts use! i d'f’fa two |r:eﬂ_sn:_na s (2D) 12000 3.0 08 N Figure 4: Normalized terminal
:u:;?onnzzl) e that solves the convection-diffusion and elliptic velocity (& = v/ (Gegs /Vin)) of
a : 28 06 0.8 the top of the bubble (left) and the
dp 1 tip of the spike (right) in the
% B V- (pV,pp) —xlp =0, 9000 25 06 collisional regime as a function of
1 = <04 s the Atwood. Triangles represent
—§V~ (pVepe) +V - (pV, xe,) =0, Mg 0.4 simulation done with ERINNA. The
: : N - T 0.2 A Simulation Erinna & Simuation Ernna | STAIGNE lines represent our classical
where V, = (—6 ,Ox), @ is the electric potential defined by £ 66 " 0,;* - —— Mode withn=1 0.2 — Modelwithn —1 | model, and the dashed and dot-
E = —V¢g with E the electric field following Ohm’s Law E = = ’ é --=- Model with n =2 --=- Model with n =2 | dashed lines are our model
—V X Band kis a diffusion coefficient. . Ba 0.0 —— Model with n =3 0.0 — = Modelvithn =3 | oytonded with first and second
The domain is defined by x € [0,12000] m and y € [0,12000] m 1. é 0.0 0.2 0.4 0.6 0.8 L0 0.0 0.2 0.4 0.6 0.8 1.0 harmonics, respectively.
The light fluid density is p; = 1 kgm™ for y > 6000 m and py, 3000 15 - -
varies for y < 6000 m. A neutral wind is added as V,, = Uje,, with Our model gives a good approximation of the spike terminal velocity in the collisionnal regime (see Fig.4).
Uy = 100 ms™*. The boundary condition is ¢z = 0 atx = 0 or 12
x =12000mand V¢ = 0aty = 0andy = 12000 m. The For the bubble terminal velocity, the extension of our model by taking into account higher harmonics was necessary.
perturbation is applied to the ion density as: 0 o This is done by using the extended interface approximation and extended potentials solutions,
250 6750
p(x,y) = ps[1 £ B cos(ie(x — xo))] X (m) n n D
where 8 = 0,01, s € {h, 1}, xo = 6000 m and the perturbation is gjﬂ;ﬁjﬁgﬁmifeil[ﬁ:{; n(x,t) = Z 7]2jx2j bn = Z azj+1C05[(2/ + Dkx] e~ @I+ DEG=1M0), ¢ = Z sz+1C05[(2f + 1)kx] e@+DkO=10) 4 by,
negative for a bubble and positive for a spike. around a spike, with r = 3. j Jj=0 Jj=0
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