
Our model gives a good approximation of the spike terminal velocity in the collisionnal regime (see Fig.4).

For the bubble terminal velocity, the extension of our model by taking into account higher harmonics was necessary.
This is done by using the extended interface approximation and extended potentials solutions,
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 Friction with a second ambient fluid was added to Goncharov’s model, which gives a 
non-linear theory for the GRTI.

 Spike terminal velocity is well described by this model in the collisional range 
compared to the classical case. 

 In the collisionnal regime, higher harmonics are necessary to obtain a precise bubble
terminal velocity.

The ionosphere is a partially ionised gas that envelops earth and can be seen like the interface 
between the atmosphere and space. 
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Characteristics : 

 Low degree of ionisation 
 𝛼 =  

௡೔

௡೔ା௡೙
≈ 0,01 

 Low temperature : 𝑇 =
10ଷ K (compare to fusion 
plasma with 𝑇 = 10଼ K)

 Peak of plasma density 
around 400 km with 
𝑛௘ = 10଺ cm-3

Different irregularities can disturb high-frequency communications between the earth 
and satellites.

Radio waves are reflected, which is useful for AM radio and long-distance communication.

Figure 1: Schematic 
of a low-density 
plasma bubble rising 
in the ionosphere. 
This plasma bubble, 
by creating smaller 
irregularities, 
disturbs the signals 
received from 
satellites. 

ANALYTICAL NON-LINEAR MODEL
Hypothesis and method Results

The Generalized Rayleigh-Taylor instability (GRTI) occurs between two 
fluids at rest, subject to external forces pointing from heavy to light 
fluid. Thus, any perturbation of an interface between a heavy fluid  
(with mass density 𝜌௛)  and a light fluid (with mass density 𝜌௟) will 
result in a rising light bubble and a falling heavy spike (see Fig.2).  

The two destabilizing forces for ionosphere perturbations are:

 Gravitational acceleration field: 𝒈 = −𝑔𝒆௬

 Frictional drag force with neutral fluid: 𝑭௛ ௟
௡ = 𝜌௛ ௟ 𝜈௜௡ 𝑽௡ − 𝑽௛ ௟ 

where 𝜈௜௡ is the moment exchange collision frequency between ions and 
neutrals,  𝑽௡ is the velocity of the neutrals and is assumed to be 
constant, 𝑽௡ = 𝑈଴𝒆௬. Note that we can remove the neutral velocities by 
including them in an effective gravity force, i.e. 𝑔௘௙௙ = 𝑔 − 𝜈௜௡𝑈଴.

The equation of the perturbed interface is given by 𝑦 = 𝜂 𝑥, 𝑡 .

Figure 2: Scheme of the unperturbed (left) 
and perturbed (right) configuration. 

Objective: Determine the impact
of the frictional drag force with
neutral fluid on the non linear
growth of the GRTI.

Our non-linear study follow the work done by Goncharov[2] on the non-linear RTI. 
We consider that the top of the bubble (resp. tip of the spike) is located at 𝑥 = 0 and that  the 
bubble (resp. spike) evolve with a parabolic form, 

𝜂 𝑥, 𝑡 = 𝜂଴ 𝑡 + 𝜂ଶ 𝑡 𝑥ଶ,

where 𝜂଴ corresponds to the elevation along the y-axis of the top (resp. the position of the tip) of a 
bubble (resp. of a spike) and 𝜂ଶ corresponds to the half value of the curvature of the top (resp. of 
the tip) of a bubble (resp. of a spike). 

Moreover, we suppose that the fluids are incompressible (𝛻 ⋅ 𝑽௛ ௟ = 0) and have an irrotational
motion, so that the velocities derive from potentials 𝜙௛ ௟ such as 𝑽௛ ௟ = −𝛻𝜙௛ ௟ . The velocity 
potentials for the heavier and lighter fluids obeying the Laplacian equation are assumed to be 
given by: 

𝜙௛ 𝑥, 𝑦, 𝑡 = 𝑎ଵ 𝑡 cos 𝑘𝑥 𝑒ି௞ ௬ିఎబ ௧ ,  𝑦 > 0,

𝜙௟ 𝑥, 𝑦, 𝑡 = 𝑏଴ 𝑡 𝑦 + 𝑏ଵ 𝑡 cos 𝑘𝑥  𝑒௞ ௬ିఎబ ௧ ,    𝑦 < 0,  

where 𝑘 is the wave number of the perturbation, with 𝑘 = 2𝜋/𝜆. Injecting the parabolic bubble
(resp. spike) shape and the velocity potentials into the kinetical boundary conditions and Bernoulli 
equations, 

డఎ

డ௧
 −

డథ೓

డ௫

డఎ

డ௫
= −

డథ೓

డ௬
,

డథ೓

డ௫
 −

డథ೗

డ௫

డఎ

డ௫
=

డథ೓

డ௬
 −

డథ೗

డ௬
,

𝜌௛ −
𝜕𝜙

𝜕𝑡
+

1

2
 𝛻𝜙௛

ଶ  − 𝜌௟ −
𝜕𝜙௟

𝜕𝑡
+

1

2
 𝛻𝜙௟

ଶ =  

−𝑔௘௙௙ 𝜌௛ − 𝜌௟ 𝑦 + 𝜈௜௡ 𝜌௛𝜙௛ − 𝜌௟𝜙௟ + 𝑓௛ 𝑡 − 𝑓௟ 𝑡 ,

and then, equating coefficient of order 𝑥௜ (𝑖 ≤ 2), we obtain a set of three ordinary differential 
equations describing our non-linear evolution of the top of the bubble. 

Dimensionless non-linear system
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,

𝑟 = 𝜌௛/𝜌௟,

𝐶 = 𝜈௜௡/ 𝑘𝑔௘௙௙
  .

With:

With 𝐷 𝜉ଶ, 𝑟 = 12 1 − 𝑟 𝜉ଶ
ଶ + 4 𝑟 − 1 𝜉ଶ + 𝑟 − 1    and 𝑁 𝜉ଶ, 𝑟 = 36 1 − 𝑟 𝜉ଶ

ଶ + 12 4 + 𝑟 𝜉ଶ + 7 − 𝑟 .

In these equations, 𝜉ଵ, 𝜉ଶ, and 𝜉ଷ are, respectively, the dimensionless (with rest to the wave number and effective acceleration field) 
displacement, curvature, and velocity of the top of the bubble, 𝜏 is the dimensionless time, 𝑟 is the ratio of the mass densities, and 𝐶 is a 
dimensionless parameter representing the collision drag over gravitational force. Following Goncharov’s idea[2], the time evolution of the 
spike is obtained from the same set by making the transformations: 𝜉ଵ → −𝜉ଵ, 𝜉ଶ → −𝜉ଶ, 𝑟 → 1/𝑟, and 𝑔௘௙௙ → −𝑔௘௙௙. 

Asymptotic Bubble Velocity
When 𝜏 → +∞, the system converges toward an asymptotic solution where 𝑑𝜉ଶ/𝑑𝜏 = 0 and 𝑑𝜉ଷ/𝑑𝜏 = 0. This leads to a constant 
curvature, 𝜂ଶ = 𝑘/6, and a constant velocity of the top of the bubble: 
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COMPARISON WITH SIMULATIONS
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Part of our work has been to simulate the highly collisional
configurations (𝐶 ≫ 1). We used ERINNA[5], a two dimensionals (2D) 
eulerian code that solves the convection-diffusion and elliptic
equations:  

where 𝛻 = −𝜕௬, 𝜕௫ , 𝜙ா is the electric potential defined by 
𝑬 = −𝛻𝜙ா with 𝑬 the electric field following Ohm’s Law 𝑬 =
− 𝑽 × 𝑩 and  𝜅 is a diffusion coefficient.
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Figure 3: Simulation of plasma 
density with ERINNA centered
around a spike, with 𝑟 = 3.

Mass density at 𝑡 = 130 s

The domain is defined by 𝑥 ∈ 0,12000 m and 𝑦 ∈ 0,12000 m 
The light fluid density is 𝜌௟ = 1 kgmିଷ for 𝑦 > 6000 m and 𝜌௛

varies for 𝑦 < 6000 m. A neutral wind is added as 𝑽௡ = 𝑼଴𝑒௬ with 
𝑈଴ = 100 msିଵ.  The boundary condition is 𝜙ா = 0 at 𝑥 = 0 or 
𝑥 = 12000 m and 𝛻𝜙ா = 0 at 𝑦 = 0 and 𝑦 = 12000 m. The 
perturbation is applied to the ion density as:

𝜌 𝑥, 𝑦 = 𝜌௦ 1 ± 𝛽 cos(𝑘(𝑥 − 𝑥଴))

where 𝛽 = 0,01, 𝑠 ∈ {ℎ, 𝑙}, 𝑥଴ = 6000 m and the perturbation is 
negative for a bubble and positive for a spike.

Terminal bubble velocity Terminal spike velocity
Figure 4: Normalized terminal 
velocity (𝛼 = 𝑣௕/(𝑔௘௙௙/𝜈௜௡)) of 
the top of the bubble (left) and the 
tip of the spike (right) in the 
collisional regime as a function of 
the Atwood. Triangles represent 
simulation done with ERINNA. The 
straight lines represent our classical 
model, and the dashed and dot-
dashed lines are our model 
extended with first and second 
harmonics, respectively.
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