

Q. Cauvet¹, B. Bernecker^{1,2}, S. Bouquet^{1,2}, B. Canaud^{1,2}, F. Hermeline¹, and S. Pichon¹¹CEA, DAM, DIF, F-91297 Arpajon, France²Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes (LMCE), 91680, Bruyères-le-Châtel, FRANCE

CONTEXT AND OBJECTIVE

The ionosphere^[1]

The ionosphere is a partially ionised gas that envelops earth and can be seen like the interface between the atmosphere and space.

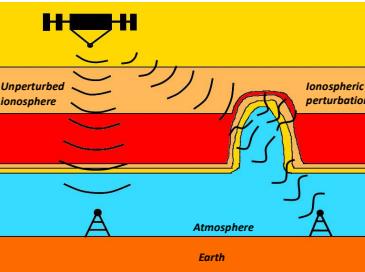


Figure 1: Schematic of a low-density plasma bubble rising in the ionosphere. This plasma bubble, by creating smaller irregularities, disturbs the signals received from satellites.

Characteristics :

- Low degree of ionisation $\alpha = \frac{n_i}{n_i + n_n} \approx 0,01$
- Low temperature : $T = 10^3$ K (compare to fusion plasma with $T = 10^8$ K)
- Peak of plasma density around 400 km with $n_e = 10^6$ cm⁻³

- Different irregularities can disturb high-frequency communications between the earth and satellites.
- Radio waves are reflected, which is useful for AM radio and long-distance communication.

Generalized Rayleigh-Taylor Instability

The Generalized Rayleigh-Taylor instability (GRTI) occurs between two fluids at rest, subject to external forces pointing from heavy to light fluid. Thus, any perturbation of an interface between a **heavy fluid** (with mass density ρ_h) and a **light fluid** (with mass density ρ_l) will result in a rising light bubble and a falling heavy spike (see Fig.2).

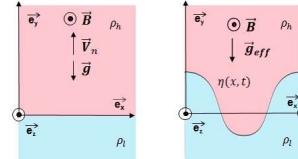


Figure 2: Scheme of the unperturbed (left) and perturbed (right) configuration.

The two destabilizing forces for ionosphere perturbations are:

- **Gravitational acceleration field:** $\mathbf{g} = -g\mathbf{e}_y$
- **Frictional drag force with neutral fluid:** $\mathbf{F}_{h(l)}^n = \rho_{h(l)}v_{in}(\mathbf{V}_n - \mathbf{V}_{h(l)})$

where v_{in} is the moment exchange collision frequency between ions and neutrals, \mathbf{V}_n is the velocity of the neutrals and is assumed to be constant, $\mathbf{V}_n = U_0\mathbf{e}_y$. Note that we can remove the neutral velocities by including them in an effective gravity force, i.e. $g_{eff} = g - v_{in}U_0$.

The equation of the perturbed interface is given by $y = \eta(x, t)$.

Objective: Determine the impact of the frictional drag force with neutral fluid on the non linear growth of the GRTI.

ANALYTICAL NON-LINEAR MODEL

Hypothesis and method

Our non-linear study follow the work done by Goncharov^[2] on the non-linear RTI.

We consider that the top of the bubble (resp. tip of the spike) is located at $x = 0$ and that the bubble (resp. spike) evolve with a **parabolic form**,

$$\eta(x, t) = \eta_0(t) + \eta_2(t)x^2,$$

where η_0 corresponds to the elevation along the y -axis of the top (resp. the position of the tip) of a bubble (resp. of a spike) and η_2 corresponds to the half value of the curvature of the top (resp. the tip) of a bubble (resp. of a spike).

Moreover, we suppose that the fluids are **incompressible** ($\nabla \cdot \mathbf{V}_{h(l)} = 0$) and have an **irrotational** motion, so that the velocities derive from potentials $\phi_{h(l)}$ such as $\mathbf{V}_{h(l)} = -\nabla\phi_{h(l)}$. The velocity potentials for the heavier and lighter fluids obeying the Laplacian equation are assumed to be given by:

$$\phi_h(x, y, t) = a_1(t) \cos(kx) e^{-k(y-\eta_0(t))}, \quad y > 0,$$

$$\phi_l(x, y, t) = b_0(t)y + b_1(t) \cos(kx) e^{k(y-\eta_0(t))}, \quad y < 0,$$

where k is the wave number of the perturbation, with $k = 2\pi/\lambda$. Injecting the parabolic bubble (resp. spike) shape and the velocity potentials into the kinetical boundary conditions and Bernoulli equations,

$$\begin{aligned} \frac{\partial \eta}{\partial t} - \frac{\partial \phi_h}{\partial x} \frac{\partial \eta}{\partial x} &= -\frac{\partial \phi_h}{\partial y}, \\ \left(\frac{\partial \phi_h}{\partial x} - \frac{\partial \phi_l}{\partial x} \right) \frac{\partial \eta}{\partial x} &= \frac{\partial \phi_h}{\partial y} - \frac{\partial \phi_l}{\partial y}, \\ \rho_h \left[-\frac{\partial \phi}{\partial t} + \frac{1}{2} (\nabla \phi_h)^2 \right] - \rho_l \left[-\frac{\partial \phi_l}{\partial t} + \frac{1}{2} (\nabla \phi_l)^2 \right] &= \\ -g_{eff}(\rho_h - \rho_l)y + v_{in}(\rho_h \phi_h - \rho_l \phi_l) + f_h(t) - f_l(t), \end{aligned}$$

and then, equating coefficient of order x^i ($i \leq 2$), we obtain a set of three ordinary differential equations describing our non-linear evolution of the top of the bubble.

Results

Dimensionless non-linear system

$$\begin{aligned} \frac{d\xi_1}{dt} &= \xi_3 \\ \frac{d\xi_2}{dt} &= -\frac{1}{2} (6\xi_2 + 1)\xi_3 \\ \frac{d\xi_3}{dt} &= -\frac{6\xi_2 - 1}{D(\xi_2, r)} \left\{ \frac{N(\xi_2, r)\xi_3^2}{(6\xi_2 - 1)^2} - 2(r - 1)\xi_2 \right. \\ &\quad \left. - C\xi_3 \left[r(2\xi_2 + 1) - \frac{24\xi_2^2}{6\xi_2 - 1} + (2\xi_2 - 1)\frac{6\xi_2 + 1}{6\xi_2 - 1} \right] \right\} \end{aligned}$$

With $D(\xi_2, r) = 12(1 - r)\xi_2^2 + 4(r - 1)\xi_2 + (r - 1)$ and $N(\xi_2, r) = 36(1 - r)\xi_2^2 + 12(4 + r)\xi_2 + (7 - r)$.

In these equations, ξ_1 , ξ_2 , and ξ_3 are, respectively, the dimensionless (with rest to the wave number and effective acceleration field) **displacement, curvature, and velocity of the top of the bubble**, τ is the dimensionless time, r is the ratio of the mass densities, and C is a dimensionless parameter representing the collision drag over gravitational force. Following Goncharov's idea^[2], the time evolution of the spike is obtained from the same set by making the transformations: $\xi_1 \rightarrow -\xi_1$, $\xi_2 \rightarrow -\xi_2$, $r \rightarrow 1/r$, and $g_{eff} \rightarrow -g_{eff}$.

Asymptotic Bubble Velocity

When $\tau \rightarrow +\infty$, the system converges toward an asymptotic solution where $d\xi_2/dt = 0$ and $d\xi_3/dt = 0$. This leads to a constant curvature, $\eta_2 = k/6$, and a constant velocity of the top of the bubble:

$$v_b = \frac{v_{in} \frac{1+2r}{k}}{6r} \left(\sqrt{1 + 12 \frac{r(r-1)}{c^2(1+2r)^2}} - 1 \right)$$

Classical regime^[2] ($C \approx 0$)

$$v_b = \sqrt{\frac{\lambda g_{eff}}{6\pi} \frac{2A_t}{1+A_t}}$$

With $A_t = \frac{\rho_h - \rho_l}{\rho_h + \rho_l}$

Collisional regime^[3,4] ($C \gg 1$)

$$v_b = \frac{g_{eff}}{v_{in}} \frac{2A_t}{3 + A_t}$$

COMPARISON WITH SIMULATIONS

Part of our work has been to simulate the **highly collisional configurations** ($C \gg 1$). We used ERINNA^[5], a two dimensions (2D) eulerian code that solves the convection-diffusion and elliptic equations:

$$\begin{aligned} \frac{\partial \rho}{\partial t} - \frac{1}{B} \nabla \cdot (\rho \nabla \phi_E) - \kappa \Delta \rho &= 0, \\ -\frac{1}{B} \nabla \cdot (\rho \nabla \phi_E) + \nabla \cdot (\rho \mathbf{V}_n \times \mathbf{e}_z) &= 0, \end{aligned}$$

where $\mathbf{V}_E = (-\partial_y, \partial_x)$, ϕ_E is the electric potential defined by $\mathbf{E} = -\nabla\phi_E$ with \mathbf{E} the electric field following Ohm's Law $\mathbf{E} = -\mathbf{V} \times \mathbf{B}$ and κ is a diffusion coefficient.

The domain is defined by $x \in [0, 12000]$ m and $y \in [0, 12000]$ m. The light fluid density is $\rho_l = 1 \text{ kg m}^{-3}$ for $y > 6000$ m and ρ_h varies for $y < 6000$ m. A neutral wind is added as $\mathbf{V}_n = U_0\mathbf{e}_y$ with $U_0 = 100 \text{ ms}^{-1}$. The boundary condition is $\phi_E = 0$ at $x = 0$ or $x = 12000$ m and $\nabla\phi_E = 0$ at $y = 0$ and $y = 12000$ m. The perturbation is applied to the ion density as:

$$\rho(x, y) = \rho_s [1 \pm \beta \cos(k(x - x_0))]$$

where $\beta = 0,01$, $s \in \{h, l\}$, $x_0 = 6000$ m and the perturbation is negative for a bubble and positive for a spike.

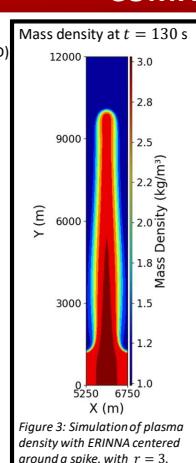
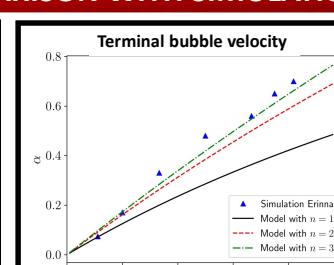


Figure 3: Simulation of plasma density with ERINNA centered around a spike, with $r = 3$.



Our model gives a good approximation of the spike terminal velocity in the collisional regime (see Fig.4).

For the **bubble terminal velocity**, the extension of our model by taking into account **higher harmonics** was necessary. This is done by using the extended interface approximation and extended potentials solutions,

$$\eta(x, t) = \sum_{j=0}^n \eta_j x^{2j}$$

$$\phi_h = \sum_{j=0}^n a_{2j+1} \cos((2j+1)kx) e^{-(2j+1)k(y-\eta_0)},$$

$$\phi_l = \sum_{j=0}^n b_{2j+1} \cos((2j+1)kx) e^{(2j+1)k(y-\eta_0)} + b_0 y,$$

CONCLUSION^[6]

- ❖ Friction with a second ambient fluid was added to Goncharov's model, which gives a non-linear theory for the GRTI.
- ❖ Spike terminal velocity is well described by this model in the collisional range compared to the classical case.
- ❖ In the collisional regime, higher harmonics are necessary to obtain a precise bubble terminal velocity.

REFERENCES

- [1] Michael C Kelley. "The Earth's ionosphere: plasma physics and electrodynamics", (2009)
- [2] V. N. Goncharov. "Analytical model of nonlinear, single-mode classical Rayleigh-Taylor instability at arbitrary Atwood numbers", Physical review letters, (2002)
- [3] E. Ott. "Theory of Rayleigh-Taylor bubbles in the equatorial ionosphere", Journal of Geophysical Space Physics, (1978)
- [4] S. L. Ossakow and P. Chaturvedi. "Morphological studies of rising equatorial spread F bubbles", Journal of Geophysical Space Physics, (1978)
- [5] F. Hermeline. "A finite volume method for approximation of convection-diffusion equations on general meshes", International journal for numerical methods in engineering, (2012)
- [6] Q. Cauvet, B. Bernecker, S. Bouquet, B. Canaud, F. Hermeline, and S. Pichon. "Effect of collision with a second fluid on the temporal development of nonlinear, single-mode, Rayleigh Taylor instability", submitted, (2021)