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Model description

A dynamic model of the perturbations [1] have been used in order to further derive the corre-

sponding magnetic error field modes by means of the perturbed system of equations providing

the dynamics of the neoclassical resistive perturbations shown in (79) of Ref. [1]:
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The system of equations provides the outer plasma (including various external resistive struc-

tures) perturbed equations localized at the magnetic surface of radial coordinate rs where the

perturbation is developing. F
jk

mni and G
jk
mni are exactly derived coefficients showing the depen-

dence of the outer plasma resistive wall and passive coils system. The active part of the latter

is comprised by the Emn quantity. The local perturbation is searched for as the perturbed flux

Φ
jk
s where −∂Φ
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s /∂ t is the Fourier term of the perturbed electric scalar potential at rs. Φ

′ jk
s is

the radial derivative of the perturbed flux. If we parametrize the error field in the absence of the

plasma in the same manner as the perturbation by means of a vacuum flux ΨEF , equation (72)

from Ref. [1] showing the response of the plasma in the presence of the error field [2] becomes
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αmn
w and αmn

BS are (73) and (74) from Ref. [1] corresponding to the island dynamics and the boot-

strap term effects. The Ψmn ∼= (i/R0)(m/q− n)Φmn parametrization has been used. Therefore

by introducing the error field the perturbed system of equations (1) now is
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J
jk
mni and K

jk
mni are derived by using the jump of the derivative of the logarithm of the flux pertur-

bation across the corresponding inertial-resistive layer, for the error field and for the perturbation
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mode, respectively. The right hand part of (3) uses our validated direct model[1] results for the

involved perturbations through our derived quasi-analytic expression that it has been previously

proven to match the experimental results by means of its amplitude and the frequency. Only

then we are entitled to further derive the involved error field mode quantities. qs and ss are the

safety factor and the shear at rs. We are searching for the solution Φ
jk
EF as the sum of the general

solution of the homogenous part of the system (3) and a particular solution of the inhomoge-

neous one. By Laplace transforming (3), applying the long division of the fraction and finally

using the partial fraction decomposition method, we get the particular solution as
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All the coefficients are exactly derived expressions of the dynamic plasma quantities provided

by the diagnostics data tables and of the outer plasma resistive structures parameters. {si}i=1,..,2L

are the 2L roots of the D(τ) = 0 equation where
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is the Leibniz description of the characteristic determinant of the Laplace transformed system

of error field equations (3). L = (m2−m1+1)(n2−n1+1) and l = m−m1+1+(n−n2)(m2−

m1 + 1) where m and n span m1 < m < m2 and n1 < n < n2. {τp}p=1,..,7L are the roots of the

∆(τ) = 0 equation from (96) of Ref. [1]. The general error field solution is finally
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λi and vi are the eigenvalues and the eigenfunctions of the 2L×2L matrix
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and ci are constants left to be derived from the initial conditions. A suitable assumption is to

consider the only presence of the error field at t = 0. α l and β l are exactly derived solution

related to the plasma external resistive wall and coils system. Recall the one-to-one relations

between l and the mode numbers (m,n) i.e. m = l+m1−1+(m2−m1+1)[(l−1)/(m2−m1+

1)] and n = n1 +[(l−1)/(m2 −m1 +1)][3]. The square bracket here means the integer part.
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Model testing against JET results

The solution (6) has been tested during various discharges at JET. For instance for the JET

shot no. 77635 figures 1(a) and 1(b) shows the good match between our calculated pertur-

bation amplitude and frequency respectively, using our direct model derived perturbed flux

function Ψmn
s [1]. Based on this good matching result we are encouraged to derive trustwor-

thy values for the error field flux amplitude by using relation (6) that is shown in figure 1(c).
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Figure 1: JET 77635 shot: 2/1 calculated vs mea-

sured perturbation (a) amplitude, (b) frequency and

(c) 2/1 calculated error field amplitude

Instead of directly considering the measured

perturbed magnetic flux associated to the per-

turbation, we use our calculated one that pro-

vides a quasi-analytic solution for the corre-

sponding error field mode if our calculated

perturbation matches the measured quantity.

According to the observations there is an

early 2/1 mode that locks from 3.65s until

3.8s. Although no error field reference has

been assumed, our calculations confirm that

the calculated corresponding error field mode

is pretty high (approx. 40% of the perturba-

tion amplitude) in order to trigger the mode

locking effect. The measured data that is com-

pared against our calculated results in figures

1(a) and 1(b) is provided by the JET Mode

Analysis MHD python code [4] concerning

the modes amplitude, frequency and radial lo-

cation. The rest of the plasma quantities we

use in our calculations is provided by the di-

agnostic data tables at JET. On the other hand

figure 2 shows a similar behavior for two JET shots having no mode locking effect reported.

Our derived error field amplitude calculations following the good match between the measured

and the calculated perturbations amplitude seems to justify the lack of the mode locking effect:

the error filed amplitude, in both cases, is pretty low compared to the perturbation one. No mode

frequency comparison is shown for the simple reason that the toroidal plasma rotation collected

from using the charge exchange recombination spectroscopy diagnostics is not provided. It has

been used the perturbations spectrogram to provide the local toroidal plasma rotation instead.
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Figure 2: JET 96230 and 98065 shots measured vs calculated amplitude of the perturbations ((a),(c))

and of the corresponding error fields ((b),(d)), respectively.

Keeping into account that no mode locking occurs in order to alter the local plasma rotation,

we think that this approach is reasonable. To conclude a dynamic expression for the amplitude

of the intrinsic magnetic error field has been provided by inverting an interpretative model that

offers good matching calculated versus measured results at JET. By relying on the mentioned

direct model testing and validation we believe that our approach in delivering our derived error

field results is also valid and reliable.
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