

Fast-ion studies with three-ion ICRF scenarios in non-active JET plasmas

Ye.O. Kazakov¹, M. Nocente^{2,3}, J. Garcia⁴, V.G. Kiptily⁵, J. Ongena¹, R. Coelho⁶, T. Craciunescu⁷, E. Delabie⁸, E. de la Luna⁹, M. Dreval¹⁰, R. Dumont⁴, S.E. Sharapov⁵, M. Schneider¹¹, P. Siren⁵, Ž. Štancar⁵, H. Weisen¹² and JET Contributors*

¹ *Laboratory for Plasma Physics, LPP-ERM/KMS, Brussels, Belgium*

² *Dipartimento di Fisica, Università di Milano-Bicocca, Milan, Italy*

³ *Institute for Plasma Science and Technology, CNR, Milan, Italy*

⁴ *CEA, IRFM, Saint-Paul-lez-Durance, France*

⁵ *CCFE, Culham Science Centre, Abingdon, UK*

⁶ *IST, Universidade de Lisboa, Lisbon, Portugal*

⁷ *National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania*

⁸ *Oak Ridge National Laboratory, Oak Ridge, USA*

⁹ *Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain*

¹⁰ *NSC 'Kharkiv Institute of Physics and Technology', Kharkiv, Ukraine*

¹¹ *ITER Organization, Route de Vinon-sur-Verdon, St. Paul lez Durance, France*

¹² *Swiss Plasma Center, EPFL, Lausanne, Switzerland*

*See the author list of J. Mailloux et al., *Nucl. Fusion* (2022); <https://doi.org/10.1088/1741-4326/ac47b4>

Significant progress with the development of three-ion ICRF scenarios in support of the ITER Research Plan has been recently achieved [1]. We report the results of JET studies where the three-ion ^4He - (^3He) -H scheme was applied for heating non-active H- ^4He plasmas, both on-axis and off-axis [2], and studying the impact of fast ions on the plasma confinement. The spatial profile of energetic ^3He ions was controlled by varying the ICRF antenna phasing, resulting in significant differences in MHD behaviour and sawtooth dynamics. Our results confirm that the three-ion ICRF scenario can be applied to control the radial profile of the safety factor and sustain plasmas with an inverted q -profile at JET, complementing earlier observations of its application in D- ^3He plasmas [3]. Another important highlight of the JET experiments in H- ^4He plasmas reported here is the demonstration of the capability to measure simultaneously both He isotopes, $n(^4\text{He})/n_e \approx 5\text{-}15\%$ and $n(^3\text{He})/n_e \approx 0.2\%$, using the high-resolution sub-divertor gas spectroscopy [4].

In this contribution, we also report on the successful application of the three-ion ^9Be / ^{22}Ne /Ar- (^4He) -H ICRF scheme at JET. This scenario makes use of intrinsic ^9Be ($Z/A \approx 0.44$), and/or extrinsic impurities with a similar charge-to-mass ratio, e.g., ^{22}Ne and Ar ($Z/A \approx 0.45$), to optimize the efficiency of ICRF absorption by a small amount of ^4He ions ($n(^4\text{He})/n_e \approx 0.5\%$) in hydrogen plasmas [1]. JET experimental results confirm that an additional injection of a very small amount of ^{22}Ne impurities is beneficial for maximizing the population of MeV-range ^4He ions with ICRF in the plasma, as evidenced by gamma-ray spectroscopy [5]. In the absence of a direct control of the level of ^9Be impurities, an additional seeding of ^{22}Ne or Ar impurities is a promising technique that can be also applied in future ITER plasmas.

- [1] Ye.O. Kazakov et al., *Phys. Plasmas* **28**, 020501 (2021)
- [2] M. Schneider et al., *EPJ Web. Conf.* **157**, 03046 (2017)
- [3] M. Dreval et al., *Nucl. Fusion* (2022); <https://doi.org/10.1088/1741-4326/ac45a4>
- [4] S. Vartanian et al., *Fusion Eng. Design* **170**, 112511 (2021)
- [5] M. Nocente et al., *Plasma Phys. Control. Fusion* **62**, 014015 (2020)