

High-flux neutron generation by laser-accelerated ions from single- and double-layer targets

V. Horný^{1,2,3}, S.N. Chen⁴, X. Davoine^{2,3}, L. Gremillet^{2,3}, J. Fuchs¹

¹ Laboratoire pour l'Utilisation des Lasers Intenses, Palaiseau, France

² CEA, DAM, DIF, F-91297 Arpajon, France

³ Université Paris-Saclay, CEA, LMCE, Bruyères-le-Châtel, France

⁴ "Horia Hulubei" National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania

Contemporary ultraintense, short-pulse laser systems provide extremely compact setups for the production of high-flux neutron beams, such as required for nondestructive probing of dense matter or research on neutron-induced damage in fusion devices. Here, by coupling particle-in-cell and Monte Carlo numerical simulations, we examine possible strategies to optimize neutron sources from ion-induced nuclear reactions using 1-PW, 20-fs-class laser systems such as the recently commissioned Apollon laser [1]. To improve ion acceleration, the laser-irradiated targets are chosen to be ultrathin solid foils, either standing alone or preceded by a near-critical-density plasma to enhance the laser focusing.

We compare the performance of these single- and double-layer targets, and determine their optimum parameters in terms of energy and angular spectra of the accelerated ions. These are then sent into a converter to generate neutrons, either traditionally through (p, n) reactions in beryllium or through spallation in lead. Overall, we identify configurations that result in a neutron yield as high as $\sim 10^9 \text{ n sr}^{-1}$ and an instantaneous neutron flux above $10^{23} \text{ n cm}^{-2} \text{ s}^{-1}$. Considering a realistic repetition rate of one laser shot per minute, the corresponding time-averaged neutron flux is predicted to reach record values of $7 \times 10^6 \text{ n sr}^{-1} \text{ s}^{-1}$, even with a simple thin foil as a primary target. A further boost up to above $5 \times 10^7 \text{ sr}^{-1} \text{ s}^{-1}$ is foreseen using double-layer targets with a deuterated solid substrate. Our results draw a pathway for improvement at upcoming 10 PW lasers in which case neutron generation will be more strongly dominated by spallation [2].

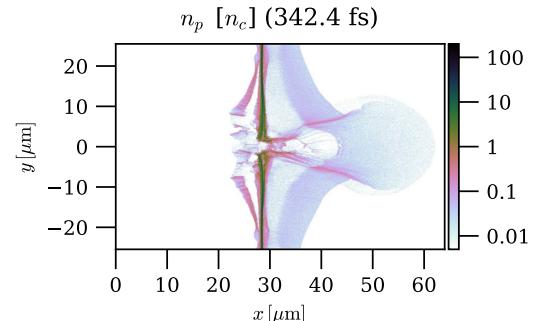


Figure 1: PIC simulation of proton acceleration in relativistic transparency regime.

References

- [1] K. Burdonov *et al.*, Matter Radiat. Extremes **6**, 064402 (2021).
- [2] B. Martinez *et al.*, Matter Radiat Extremes **7**, 024401 (2022).