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Nonneutral plasmas confined in Penning-Malmberg traps are used both as a very efficient means

of studying collective-system dynamics - and especially fluid phenomena - and as a tool to fur-

ther physics investigation, such as in the case of antimatter synthesis at very low energy for

matter-antimatter symmetry measurements. In the context of basic collective phenomena, these

plasmas are typically made of electrons generated by external sources and injected into the

confinement region, which is defined by a series of cylindrical electrodes shaping an axial po-

tential well within a uniform axial magnetic field. We have been using a quite unconventional

production scheme, i.e. using a low-amplitude radio-frequency (RF) drive on one of the trap

electrodes [1, 2]. When this RF drive is applied to one of the trap electrodes and its frequency

is ∼ 1− 20 MHz (corresponding approximately to axial bounce frequencies of electrons for

energies of few to some ten eV), it can effectively heat up the few free electrons in the residual

gas and initiate a discharge and accumulation of an electron plasma. With respect to more con-

ventional discharges, here RF power and residual gas pressure are much lower: RF amplitude is

≤ 10 V and pressure is in the high to ultra-high vacuum regime (10−7−10−9 mbar). Interesting

stationary states are reached within some seconds where the electron plasma (contaminated by

transient and partially-trapped ions) maintains total charge and spatial density distribution.

Among many configurations observed experimentally, which include diffuse as well as non-

axisymmetric structures, a peculiar example is the creation of a single round column (vortex)

of electrons displaying a radial displacement with respect to the longitudinal symmetry axis

and thus rotating around it, with typical orbiting frequency ω1/2π ∼ 1−10 kHz. Total charge

(∼ 0.1− 1 nC) and density profile (average density 5 · 106− 5 · 107 cm−3) show very robust

stability to perturbations and usual instabilities, e.g., ion-induced instability and the relevant

loss of confinement, as long as the ionizing drive is maintained. Even more peculiar is the

occurrence of stable low-frequency (∼ 1−10 Hz) oscillations of both charge and radial offset

in these rotating vortices [3].

In this contribution, we discuss the interpretation of these oscillations. We consider only the

dynamics of the electron vortex, and construct equations for the dynamics of offset, or orbit ra-

dius r, and line charge density λ = Qp/Lp (which is basically equivalent to the electron plasma
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Figure 1: Left: Ratio of axial escape current to trapped electron column charge. Data are plotted

against the respective orbit radius, normalized to the trap radius RW . Different radii are obtained

squeezing the orbit of the vortex by means of a static octupolar potential. Right: Normalized

electron plasma charge variation versus the orbit radius along a charge-offset modulation period.

charge Qp as the plasma length Lp is approximately constant; notice that the following treat-

ment considers a generic positive λ ). In the usual pressure conditions and at room temperature,

number and density of neutrals are easily larger than those of electrons by two orders of magni-

tude, hence we neglect the dynamics of neutrals. We also ignore for the moment the variation of

ion number and density, i.e. we approximate as constant the ionization rate and ion confinement

efficiency – a cruder but initially acceptable assumption to simplify this preliminary treatment.

The line charge density equation proceeds from experimental observations. A RF-driven elec-

tron vortex rotating on a stable offset can be forced onto another orbit radius applying a static

octupolar potential on a suitably split cylindrical electrode. We observe (Fig. 1, left) that the ra-

tio between axial escape current (RF-heated electrons that overcome the trapping potential) and

vortex charge increases with increasing offset, along a linear slope as long as the normalized

displacement r/RW , with RW trap radius, is within 0.1−0.2 (larger displacements do not yield

reliable information, as significantly different equilibrium states are created). This suggests that

the trapping efficiency of heated electrons decreases with increasing radius and thus the rela-

tive charge variation obeys, to a first-order approximation, a trend λ̇/λ ∼ −r. Although not a

direct proof, this indication is confirmed a posteriori by measuring the relative time variation of

trapped charge vs offset from plasma columns exhibiting the low-frequency modulation (Fig. 1,

right). Since an equilibrium position r0 must exist with charge balance and stable offset, we

linearize around r0 and finally write a line charge density dynamics equation in the form

λ̇ = η (r− r0)λ , η > 0 (1)
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As far as the dynamics of the electron column is concerned, we consider the two-dimensional

motion only, in the cold-fluid E×B approximation, which holds since the transverse motion

time scale is much larger than that of the axial bounce and the cyclotron motion is orders of

magnitude faster and smaller in amplitude [4]. In this context, the motion of the column in the

absence of perturbations such as additional external fields or ion contaminations would obey the

equation v = E× êz/B, where v is the transverse velocity of the vortex and êz the unit vector in

the longitudinal direction. Written in components, the equation reads ṙ = 0, rθ̇ =−Er(r)/B, i.e.

a constant-frequency rotation at stable offset. In our case the radial component is nevertheless

affected by the presence of positive ions [5], who induce well-known instabilities leading to

offset growth, i.e. transient-ion and trapped-ion instabilities, respectively accounting for ions

lost after a single passage through the electron column [6] and ions bouncing multiple times

across the confinement region due to the formation of a so-called nested potential well [7].

These two mechanisms yield algebraic and exponential offset growth, respectively, i.e. their

combined effect can be written as ṙ = γr+D, where γ = βω1 =−β θ̇ and β is proportional to

the ion fraction. By substitution of the θ -component of the velocity equation into the radial one,

we get ṙ = βEr(r)/B+D. The electric field can be written as

Er (r)'
λ r

2πε0BR2
W

[
1+
(

r
RW

)2
]
− T̃ r. (2)

The first term represents the self-consistent electron vortex field written as the image-charge

field, approximated for moderate offset and small plasma transverse size. The second term is

the result of a ponderomotive (time-averaged) approximation of the fast-oscillation RF field,

which contains both an axial component - not visible in the two-dimensional description, but

implicitly considered as the source of ionization - and a radial component (we omit here the full

calculation for the sake of brevity) [8]. Finally, redefining some constants we get the system of

equations

λ̇ = η (r− r0)λ (3)

ṙ = kλ r
[
1+(r/RW )2

]
−Tr+D (4)

which exhibits a Lotka-Volterra form. Two fixed points (λ∗,r∗) – where λ̇ = 0, ṙ = 0 – exist,

i.e. P1 = (0,D/T ) (not physically interesting) and P2 =
(
(Tr0−D)/

[
kr0

(
1+(r/RW )2

)]
,r0

)
.

Calculating the Jacobian matrix in P2 and its eigenvalues one can infer the stability properties

of P2. The eigenvalues read µ1,2 = 1/2
(

TR(J)±
√

(TR(J))2−4det(J)
)

, where TR(J) and

det(J) are the trace and determinant of the Jacobian matrix, respectively. Oscillations occur

when the argument of the square root ∆ < 0, while damping requires TR(J) < 0. These two
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Figure 2: Offset- and charge-oscillating solution of eqs. 3 and 4 around the fixed point (λ∗,r∗)=

(0.92 nC, 0.31RW ). System parameters: η = 1.2 ·103 m−1·s−1; k = 2.2 ·1010 s−1; T = 2.2 s−1;

D = 5 ·10−3 m·s−1.

conditions read, respectively2T (r0/RW )2−D
[
1+3(r0/RW )2

]
/r0

1+(r0/RW )2

2

< 4η (Tr0−D) (5)

2T (r0/RW )2 <
D
r0

[
1+3(r0/RW )2

]
(6)

The small-amplitude oscillation frequency is ωLF =
√

η(Tr0−D). Realistic experimental pa-

rameters can satisfy these conditions. As an example, a numerical solution of the system of

eqs. 3 and 4 is plotted in Fig. 2, showing a slowly damped oscillation of frequency around

1 Hz. We conclude that despite a complex dynamics spanning a wide range of time scales, this

sketch can reproduce the main features observed in the experiments.
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