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Nonneutral plasmas confined in Penning-Malmberg traps are used both as a very efficient means
of studying collective-system dynamics - and especially fluid phenomena - and as a tool to fur-
ther physics investigation, such as in the case of antimatter synthesis at very low energy for
matter-antimatter symmetry measurements. In the context of basic collective phenomena, these
plasmas are typically made of electrons generated by external sources and injected into the
confinement region, which is defined by a series of cylindrical electrodes shaping an axial po-
tential well within a uniform axial magnetic field. We have been using a quite unconventional
production scheme, i.e. using a low-amplitude radio-frequency (RF) drive on one of the trap
electrodes [1, 2]. When this RF drive is applied to one of the trap electrodes and its frequency
is ~ 1 —20 MHz (corresponding approximately to axial bounce frequencies of electrons for
energies of few to some ten eV), it can effectively heat up the few free electrons in the residual
gas and initiate a discharge and accumulation of an electron plasma. With respect to more con-
ventional discharges, here RF power and residual gas pressure are much lower: RF amplitude is
< 10V and pressure is in the high to ultra-high vacuum regime (10~7 — 10~° mbar). Interesting
stationary states are reached within some seconds where the electron plasma (contaminated by
transient and partially-trapped ions) maintains total charge and spatial density distribution.

Among many configurations observed experimentally, which include diffuse as well as non-
axisymmetric structures, a peculiar example is the creation of a single round column (vortex)
of electrons displaying a radial displacement with respect to the longitudinal symmetry axis
and thus rotating around it, with typical orbiting frequency @; /27 ~ 1 — 10 kHz. Total charge
(~ 0.1 — 1 nC) and density profile (average density 5-10® —5-107 cm™) show very robust
stability to perturbations and usual instabilities, e.g., ion-induced instability and the relevant
loss of confinement, as long as the ionizing drive is maintained. Even more peculiar is the
occurrence of stable low-frequency (~ 1 — 10 Hz) oscillations of both charge and radial offset
in these rotating vortices [3].

In this contribution, we discuss the interpretation of these oscillations. We consider only the
dynamics of the electron vortex, and construct equations for the dynamics of offset, or orbit ra-

dius r, and line charge density A = Q,, /L, (which is basically equivalent to the electron plasma
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Figure 1: Left: Ratio of axial escape current to trapped electron column charge. Data are plotted
against the respective orbit radius, normalized to the trap radius Ry . Different radii are obtained
squeezing the orbit of the vortex by means of a static octupolar potential. Right: Normalized

electron plasma charge variation versus the orbit radius along a charge-offset modulation period.

charge Q) as the plasma length L, is approximately constant; notice that the following treat-
ment considers a generic positive A). In the usual pressure conditions and at room temperature,
number and density of neutrals are easily larger than those of electrons by two orders of magni-
tude, hence we neglect the dynamics of neutrals. We also ignore for the moment the variation of
ion number and density, i.e. we approximate as constant the ionization rate and ion confinement
efficiency — a cruder but initially acceptable assumption to simplify this preliminary treatment.

The line charge density equation proceeds from experimental observations. A RF-driven elec-
tron vortex rotating on a stable offset can be forced onto another orbit radius applying a static
octupolar potential on a suitably split cylindrical electrode. We observe (Fig. 1, left) that the ra-
tio between axial escape current (RF-heated electrons that overcome the trapping potential) and
vortex charge increases with increasing offset, along a linear slope as long as the normalized
displacement /Ry, with Ry trap radius, is within 0.1 — 0.2 (larger displacements do not yield
reliable information, as significantly different equilibrium states are created). This suggests that
the trapping efficiency of heated electrons decreases with increasing radius and thus the rela-
tive charge variation obeys, to a first-order approximation, a trend A /A ~ —r. Although not a
direct proof, this indication is confirmed a posteriori by measuring the relative time variation of
trapped charge vs offset from plasma columns exhibiting the low-frequency modulation (Fig. 1,
right). Since an equilibrium position ry must exist with charge balance and stable offset, we

linearize around rg and finally write a line charge density dynamics equation in the form

A=n(r—ro)A, >0 (1)
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As far as the dynamics of the electron column is concerned, we consider the two-dimensional
motion only, in the cold-fluid E x B approximation, which holds since the transverse motion
time scale is much larger than that of the axial bounce and the cyclotron motion is orders of
magnitude faster and smaller in amplitude [4]. In this context, the motion of the column in the
absence of perturbations such as additional external fields or ion contaminations would obey the
equation v = E x é,/B, where v is the transverse velocity of the vortex and é, the unit vector in
the longitudinal direction. Written in components, the equation reads 77 = 0, 8 = —E,(r) /B, i.e.
a constant-frequency rotation at stable offset. In our case the radial component is nevertheless
affected by the presence of positive ions [5], who induce well-known instabilities leading to
offset growth, i.e. transient-ion and trapped-ion instabilities, respectively accounting for ions
lost after a single passage through the electron column [6] and ions bouncing multiple times
across the confinement region due to the formation of a so-called nested potential well [7].
These two mechanisms yield algebraic and exponential offset growth, respectively, i.e. their
combined effect can be written as 7 = yr+ D, where Y = Bw; = —B6 and B is proportional to
the ion fraction. By substitution of the 8-component of the velocity equation into the radial one,

we get - = BE,(r)/B+ D. The electric field can be written as

r 2 ~
1+ (ﬁ) ] ~Tr. )

The first term represents the self-consistent electron vortex field written as the image-charge

Ar
 27meyBRE,

E, (1)

field, approximated for moderate offset and small plasma transverse size. The second term is
the result of a ponderomotive (time-averaged) approximation of the fast-oscillation RF field,
which contains both an axial component - not visible in the two-dimensional description, but
implicitly considered as the source of ionization - and a radial component (we omit here the full
calculation for the sake of brevity) [8]. Finally, redefining some constants we get the system of

equations

A= (r—ro)A 3)
= KAr |1+ (r/Rw)’| = Tr+D “)

which exhibits a Lotka-Volterra form. Two fixed points (A,,r,) — where A = 0, 7 = 0 — exist,
i.e. P = (0,D/T) (not physically interesting) and P, = <(Tr0 —-D)/ [kro <1 + (r/RW)2>] ,r()).
Calculating the Jacobian matrix in P> and its eigenvalues one can infer the stability properties

of P». The eigenvalues read ;o = 1/2 <TR(J) + \/(TR(J))2 —4det(J)> , where TR(J) and

det(J) are the trace and determinant of the Jacobian matrix, respectively. Oscillations occur

when the argument of the square root A < 0, while damping requires TR(J) < 0. These two
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Figure 2: Offset- and charge-oscillating solution of eqs. 3 and 4 around the fixed point (A, r,) =
(0.92 nC, 0.31Ry ). System parameters: = 1.2-10° m~1-s7 1 k =2.2-1010s 1, 7 =2.2571;
D=5-10"3ms 1

conditions read, respectively

2
2T (ro/Rw)* — D [1 +3(rO/RW)2} /1o
1+ (ro/Rw)*

<4n(Tro—D) &)

2T (ro/Rw)? < % (143 /Rw Y ©)

The small-amplitude oscillation frequency is @rr = \/m . Realistic experimental pa-
rameters can satisfy these conditions. As an example, a numerical solution of the system of
egs. 3 and 4 is plotted in Fig. 2, showing a slowly damped oscillation of frequency around
1 Hz. We conclude that despite a complex dynamics spanning a wide range of time scales, this

sketch can reproduce the main features observed in the experiments.
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