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The avoidance of impurity accumulation in present day stellarator devices is a key challenge 

for the development of steady-state operation scenarios in reactors based on this concept [1]. In 

the TJ-II stellarator, impurity transport was investigated previously in low-density regimes (≤ 

6×1018 m-3) [2, 3], where the radial electric field is positive across the minor radius and the plasma 

is in the electron-root. However, some limitations were found for heavy impurity (Fe, W) 

injections into high-density microwave heated plasma regimes in this device, due to the intrinsic 

limitation of the TJ-II cut-off density (1.3×1019 m-3) and to the difficulties in achieving a true 

density plateau at high densities. These limitations have been partially solved with a better 

conditioning and more operational control. Here, the behaviour of heavy impurities (Fe, W) 

injected, using the Laser Blow-Off (LBO) technique, into both electron and ion-root regimes 

in TJ-II plasmas is investigated. For this, the confinement times of the high-Z impurities are 

deduced from the decay-times of different radiation signals. In parallel, the radial and temporal 

evolution of the total radiation is analysed using the STRAHL code [4] to deduce transport 

coefficients. Finally, since neoclassical transport simulations predict differences in transport for 

different regimes [5], we compare experimental results with simulations obtained using the 

EUTERPE [6] code used to estimate neoclassical transport, and the stella [7] code, which 

predicts the turbulent counter-part. This is done in order to identify the mechanisms involved 

in these processes.  
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