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The Spherical Tokamak for Energy Production (STEP) programme aims to deliver a com-
mercially viable fusion energy plant. The reactor will be fully non-inductive, utilising mi-
crowave heating in the form of Electron Cyclotron Radio Heating (ECRH) and Electron Bern-
stein Wave (EBW) heating. Current will be driven by the microwave heating, with 80% to 90%
of the total current being driven by the plasma pressure.

The safety factor, ¢, is a function of the plasma current and an important profile to control.
The microwave heating profile must thus be designed to generate a favourable g profile. The
process of optimising the microwave heating profile is a highly non-linear problem as changing
the power deposition affects the local temperature and density, which in turn affect the current
drive efficiency and bootstrap current.

Simulations were performed using JETTO to calculate the current driven and the fully dif-
fused self consistent current profile for a given ECRH power deposition. The time required for
each of these simulations inhibits the use of traditional optimisation techniques that rely on
taking many sequential steps in parameter space.

A Genetic Algorithm (GA) is an optimisation method inspired by natural selection. A pop-
ulation of points in parameter space are considered in parallel. Those which are judged by the
algorithm to have performed the best are combined to create the next generation. The process is
iterated until a sufficiently optimal solution is found.

Performing a simulation in JETTO requires of order hours. As GAs test a number of points
in parameter space simultaneously, they are able to make use of parallel processing to quickly
converge on a solution.

In order to optimise the microwave heating profiles, they first needed to be broken down into
a set of parameters which could be treated analogous to genes. This was done by defining a
number of points and linearly interpolating between each pair of neighbours. The profile was
then normalised to a predefined heating power. Overall this parameterisation gave an unrealis-
tically angular distribution, but was sufficient at this stage with a more refinement performed at
a later stage.

The initial population provided to the GA were randomly generated within predefined limits.

Figure 1 shows the initially generated ECRH profiles and their resultant g, Electron Cyclotron



48th EPS Conference on Plasma Physics P2b.123

16
0.88 17.5- 0.88
T4
E., 0.86 o150 0.86
S
= \ 5125
=10 o 0.84
= 2 "
o g g
g 0.8 X7 ) u 10.0 082 ¢
Lo | X E 75 i
\ .
I N g 0.80
04 W A L,
Q \ | 0.78
Wo.2 \ |
\ 2.
0.0- A" 3 0.76

0.0 0.2 0.4 X 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Normalised p Normalised p

(a) ECRH profiles. (b) Safety factor profiles.
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(c) ECCD profiles. (d) Bootstrap current profiles.

Figure 1: Initial randomly generated ECRH profiles and the resulting g, ECCD, and bootstrap

current profiles.

Current Drive (ECCD), and bootstrap current profiles.

After each generation it was necessary for the GA to be able to rank the members of the
population. The best performing individuals being bred to create the next generation. There
were many features of the g profile which were desired, for instance the location and value
of the minimum. A fitness was assigned separately to each of these features between 0 (the
worst case scenario) and 1 (the ideal case). The final fitness function was then defined as a
weighted average of all of the individual fitness elements. The fitness function and a breakdown
the highest weighted constituent elements is shown in fig. 2.

The best performing 20% of runs from a generation were bred to create the next generation.
For each member of the next generation between one and three parents were selected. For
each parameter of the ECRH profile, the value was taken from one of the parents at random.
Additionally each parameter had a probability of mutating, whereby the value would change by
a small amount. This mutation was used as a means of further exploring parameter space. Were
this mutation too small the final result would not reflect a global maximum fitness, were it too
large the GA would fail to converge at all.

Using 30 individuals per generation the GA was able to converge on a sufficiently optimal
solution in fewer than 10 generations. Figure 3 shows the fitness value of the best performing

individual from each generation. The optimal ECRH profiles and resulting ¢ profiles after 10
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Figure 2: The combined fitness function and the highest weighted fitness elements. The his-

tograms show the values achieved by each member in the population after five generations. The

member with the highest combined fitness is indicated in each of the fitness elements with a

solid line. The dotted line shows the fitness awarded for each element.
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Figure 3: The fitness of the best performing individual from each generation.

generations are shown in fig. 4. Though this required hundreds of simulations to be run, de-
pending on JETTO settings the optimisation to be completed within a day thanks to the parallel
nature of the GA.

In order to ensure that the solution reflected

a global optimum, the random seed responsible _* ~ Best {fitness = 0.925) 722?:
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in a general manner and allows any JETTO in-

puts to be optimised and any JETTO outputs to (b) Safety factor profiles.

be used in the fitness function. Currently pellet Figure 4: The ECRH and ¢ profiles after 10

injection parameters and total fusion power are generations. The individual with the highest

under consideration as parameters which may  gen.co score is indicated by the dotted line.

benefit from this tool’s application.



