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Introduction of a steep-rising front at the beginning of the laser pulse substantially influ-

ences electron and ion dynamics in the irradiated target, including generation of high density

particle bunches and mitigation of specific transverse instabilities [1, 2]. The steep rising front

can be produced by the plasma shutter [3–8], a thin solid foil placed in front of the target.

This approach also reduces prepulse and locally increases laser intensity [9] at the cost of

losing a part of the laser pulse energy. Consequently, it results in increase of the ion energy

[10, 11] and decrease of the divergence of ion beam accelerated from the target located behind

Figure 1: Plasma shutter: (a) 3D visualiza-

tion with highlighted 2D slice of intensity pro-

file, source [9]. (b) Central 1D profile of di-

mensionless amplitude of the electric field in

the y-direction (a0y) at later time, source [10].

the shutter [11].

In this work, we study the plasma shutter inter-

action with a PW-class laser (corresponding to sys-

tems like ELI Beamlines) and subsequent interac-

tion of the transmitted laser pulse with a silver foil

using 2D and 3D particle-in-cell (PIC) simulations

(code EPOCH [12]) and their combination with 2D

hydrodynamic simulations (code PALE [13]) sim-

ulating the influence of a sub-ns prepulse on the

double-shutter configuration.

The simulations consist of a fully ionized sili-

con nitride plasma shutter of electron density ne =

835 nc and thickness d = 20 nm, a partially ionized

silver target (charge number Z = 40 and mass num-

ber A = 108) of ne = 2100 nc and d = 20 nm and a

linearly polarized laser pulse with wavelength λ =

1 µm (thus the critical density corresponds to nc ≈

1.115×1021 cm−3). The laser pulse has a Gaussian

spatial profile with the full width at half maximum

(FWHM) equal to 3 λ . The temporal profile has a
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sin2(t) shape in intensity and beam duration is 64 fs. The pulse roughly corresponds to a 30 fs

long 1 PW laser pulse with a Gaussian shape. The peak intensity is Imax = 1×1022 W/cm2, thus

yielding dimensionless amplitude a0 = eE0/meωc ≈ 0.85
√

I [1018W/cm2]λ 2 [µm]≈ 85. Here,

E0 is the electric field amplitude, ε0 is permittivity of vacuum, ω is laser angular frequency, me

and e are electron mass and charge, respectively, and c is speed of light in vacuum.

The effects of the transmittion of the laser pulse through the plasma shutter are shown in

Fig. 1. The relativistic plasma aperture [14] is generated, laser pulse is diffracted and its con-

structive interference with generated high harmonics leads to the local intensity increase by the

factor of 7 in our 3D simulation [9]. Fig. 1-b shows the central 1D slice of electric field at later

time when the 1D profile stabilized. The transmitted laser pulse acquires the steep-rising front

and is about 5 periods shorter [10, 11].

Figure 2: Visualization of our 3D simulation

of plasma shutter (blue), main target (green)

and laser pulse (red). Inset contains silver ion

energy spectra at the end of simulation [11].

In the next step we investigated the effect of

these pulse modifications on ion acceleration from

the silver target [11], comparing the cases with-

out (W/O-Sh) and with the shutter (W/1xSh). When

the plasma shutter is included in our simulations a

beam-like structure in ion density (green) appears

around the laser axis as can be seen in Fig. 2, re-

sulting in reduction of the divergence [11] from 35◦

to 5◦ for x-z and from 28.5◦ to 18.5◦ for x-y planes

compared to the simulation without the shutter. The

steep rising front (and increased intensity) gener-

ated by the plasma shutter also results in increase

of maximal silver ion energy by 35 % (from 115

MeV/A to 155 MeV/A) as can be seen in the inset of Fig. 2.

The changes can be explained by different electron (and consequently ion) dynamics when

the steep front is introduced. Fig. 3 shows the electron density of the silver target in simula-

tions with the plasma shutter (Fig. 3-a) and without it (Fig. 3-b) during the interaction with

the laser pulse [11]. In the simulation with the steep front (Fig. 3-a) a high density electron

bunches are generated around the laser axis (z = 0) in the x-z plane (for discussion about x-y

and y-z planes and the bunches coupling with the generated magnetic field in the y-direction

exceeding 4 gigagauss see Ref. [11]). On the contrary, in Fig. 3-b the structures in electron

density are pre-expanded by the relatively long low-intensity part of the time profile of the

incoming laser pulse (blue line in Fig. 1-b) before the interaction with the high-intensity part.
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Figure 3: Logarithm of electron density of

silver target in x-z plane from 3D simulations:

a) with the plasma shutter, b) without it.

The differences in the distribution of electron den-

sity then manifests itself also in the corresponding

ion distributions via the generated electric field in

the z-direction as discussed in Ref. [11].

In order to take prepulse into account, we com-

bined the 2D particle-in-cell simulations with 2D

hydrodynamic ones assuming the double-shutter

scenario. The first plasma shutter was pre-expanded

by a prepulse with intensity I = 1× 1012 W/cm2

and duration of 125 ps using the hydrodynamic sim-

ulation (treatment of ns prepulses by other tech-

niques like using the plasma mirrors [15] is as-

sumed). The final 2D density profile was sub-

sequently imported into the initial condition of

2D PIC simulation. Therefore, its configuration is

the pre-expanded shutter, the non-expanded shut-

ter and the silver target with spacing of 5 µm be-

tween each of them (see Fig. 9-a in Ref. [11]).

The comparison of the silver ion energy spectra

of this case (reffered to as W/2xSh) to 2D coun-

terparts of the cases without (W/O-Sh) and with

non-expanded single shutter (W/1xSh) is shown in

Fig. 4. The energy spectra of the cases with single

and double shutters are very similar for ions with

energy up to 160 MeV/A.

Figure 4: Silver ion energy spectra in 2D.

The addition of the pre-expanded shutter affected

only the most energetic ions. A significant increase

of ion energy compared to the case without shutter

is visible also for the double shutter case.

Note that the energies of the W/O-Sh simulation

is overestimated as no prepulse was assumed in it.

The corresponding simulation with silver target pre-

expanded by the same 125 ps long prepulse is repre-

sented by the purple solid line (W/O-Sh-PP). Com-
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paring the two cases with prepulse included (W/O-Sh-PP and W/2xSh) results in the increase

of maximal ion energy from 64 MeV/A to 167 MeV/A.

In conclusion application of the steep rising front (and increased intensity) generated by the

plasma shutter in our 3D simulations resulted in increase of maximal silver ion energy by 35 %,

reduce of divergence of ion beam by 20◦ in the dominate plane and generation of high density

electron bunches . The assumed double plasma shutter scenario (taking into account a 125 ps

prepulse) results in significant increase of maximal silver ion energy.
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