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The envelope equation describing the evolution of the Gaussian laser spot size in the paraxial

approximation is written in the following form [1]:
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where k0 = 2π/λ0 is the laser wave number, K(w,x) is a radially averaged quantity and it is

proportional to rd[ne/(γnc)]/dr, where ne is the electron density in the plasma, nc =ω2
0 meε0/e2

is the critical density, defined by the laser wavelength ω0 = 2πc/λL, and γ =
√

1+a2
0/2 is the

averaged relativisitc Lorentz factor of electrons inside the laser field. The right hand side of

Eq. (1) decides the evolution of the laser spot radius (w): if the first term (plasma term) is

stronger then relativistic self focusing takes place and the spot size decreases, while in the

case of diffraction the second term is dominant and the spot size increases. Since the laser

field amplitude depends on w (a0 ∝ 1/w), the relativistic focusing term will be proportional to

K ∝ w−2, thus it gets weaker as the pulse is diffracted. In order to compensate this an increasing

density profile is needed.

One can understand the pulse evolution in a plasma by analyzing the radial dependence of the

phase velocity of the laser field. The effective phase velocity of a laser pulse inside the plasma

is given by [2]:
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where α = x/LR, LR = πw2
0/λ0 is the Rayleigh length, kp = ωp/c is the plasma wave number

with ωp =
√

e2ne/(meε0). In the limit of pure vacuum (kp = 0) this expression takes the form

presented in Ref. [3], with wvacuum = w0

√
1+α2. The evolution of the laser spot size, and

intensity, is governed by the wavefront curvature, which is just the integral of the phase velocity

along the longitudinal coordinate at each radial point. By using the replacement k2
p/(2k2

0) =

ne/(2ncγ) in Eq. (2) one can integrate the phase velocity with arbitrary longitudinal density

profiles. For simplicity we assume only weak relativistic effects and the laser spot radius is

approximated with the usual Gaussian expression: w ≈ w0

√
1+α2 and the γ factor depends on

x via γ =
√

1+a2/2, where a = w0a0/w. In Fig. 1 the wavefront shapes are shown of a laser
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Figure 1: Shape of the wavefront after one Rayleigh length propagation of the pulse with a0 = 2 and

w0 = 7 µm in plasma with density: ne/nc = 1.5 ·10−4 (blue), ne/nc = 0.0012 (orange), ne/nc = 0.0027

(green) and ne/nc = 0.0054 (red).

pulse focused to 7 µm waist radius, which propagates LR distance in a uniform plasma with

different densities. Initially the wavefront is constant in r and it is equal to zero. One can see

that there is a plasma density value at which the wavefront curvature is negligible, at least in the

interval −w0 < r < w0, which means that the central part of the laser pulse does not diffract. At

lower density the pulse diffracts almost as in vacuum (dw/dr < 0), while if the density is high

enough self focusing is the dominant (dw/dr > 0). Similar result can be obtained by choosing

a spatial dependence of ne(x), that can resemble a Gaussian gas jet, for instance.

For a more precise modeling of the pulse evolution we need to solve numerically Eq. (1),

where the initial spot radius and its derivative (dw/dr) can be also defined in order to use

the focus position (x f ) as an input parameter. It is important to note that in the case of few-

cycle pulses the radial density profile witnessed by the laser field is proportional to the laser

envelope, i.e. it has a Gaussian distribution due to the longitudinal ponderomotive force. This

density modulation we define as δn = n0[1+ f exp(−r2/w2)], where f < 1 is a small number

expressing the amplitude of the density modulation and, according to our simulations, its value

is between 0.3-0.6 for a0 between 2 and 3. In the case of a gas jet the plasma density profile is

given by the following function ne(x,r) = n0 exp(−(x−x0)
2/L2

R)[1+ f exp(−r2/w2)], where x0

is the center of the gas jet. This density function is used in Eq. (1) in the expression of K [1]:

K(w,x) =−

[

ωp(x)

ck0

]2∫ Rc

0

4r

w2
(1− s)e−s ne(r)

n0

(

1+
e−s

2W 2

)−1/2

dr, (3)

where s = 2r2/w2, W = w/(w0a0) and the x−dependence of the density is included in the

plasma frequency.

The solutions of Eqs. (1, 3) are shown in Fig. 2, where EL = EL0w0/w is plotted versus
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Figure 2: Results of modeling by solving numerically Eq (1). Here w0 = 7 µm and a0 = 3. The green

curve is the density profile of the gas jet. The focusing position is varied: x f = 80 µm (orange), x f =

120 µm (red), x f = 180 µm (blue). The dotted lines are obtained for f = 0.0, dashed lines are for f = 0.3

and the full lines for f = 0.5.

distance. Here the peak density is n0 = 1.2×1019 cm−3. Self-focusing is the strongest when the

pulse is focused deeper inside the gas jet, but the spot size remains almost unchanged within

the gas jet if the focus position is farther behind the center of the jet. The effect of the density

modulation is also clearly visible: if f is larger (stronger ponderomotive repulsion), then the

self focusing is weaker, but the spot size still changes slowly as the pulse passes through the

plasma (see full lines).
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Figure 3: Results of PIC simulations with parameters detailed in the text (full lines). The dashed lines

show the laser field amplitude in vacuum propagation. The focus positions and other physical parameters

are the same as in Fig. 2.

We have tested the predictions of the numerical modeling by performing particle-in-cell sim-

ulations [4], where all nonlinear effects are included. The density profile in the simulation is

the same as in Fig. 2, the laser intensity is IL = 2 × 1019 W/cm2 and its duration is tL =8
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fs (FWHM). The size of the simulation box (moving window) is 24× 30× 30 µm3, which is

resolved by 600×300×300 grid points, where the largest resolution is applied along the prop-

agation (x−)direction. The laser field amplitude (shown in Fig. 3) evolves very similarly to the

model result (Fig. 2). We find better agreement with the model if f ≈ 0.5, which is close to the

value measured in the simulation f = 0.42. In the simulations the pulse starts to diffract faster

than in the modeling, which can be attributed to the energy depletion. This effect is not included

in Eqs. (1, 3) and the rate of energy loss is not trivial in the case of few-cycle pulses, it is lower

compared to the widely used scaling formula [5], which gives a depletion length Ld ≈ ctLnc/ne.

If we consider 2 times longer depletion length for few-cycle pulses the diffraction compensation

can be effective only if Ld > LR, which implies: ne/nc < 2NLλ 2
0 /(πw2

0), where NL is the number

of laser cycles within the pulse. For efficient wakefield generation one can set the conditions

w0 ≈ λp
√

γ/2, which gives a lower limit for the pulse duration: NL > πγ/4.

It has been shown that the vacuum diffraction (or Rayleigh diffraction) of a tightly focused

(w0 < 10 µm) laser pulse can be compensated by choosing a plasma refractive index which

changes the convex shape of phase velocity and results in a flattop wavefront even after signifi-

cant propagation inside the plasma. It is found that the laser pulse has to be focused in front of a

gas jet in order to reduce the strong variation in laser spot radius, which results in a more stable

wakefield structure and a low divergence laser pulse at the rear side of the gas jet. This allows

us the further use of the pulse in a second acceleration stage, which can be a second gas jet or

a discharge capillary waveguide. The scheme works even for few cycle pulses, but the required

pulse duration is proportional to the laser field amplitude, thus at higher intensity longer pulses

are needed.
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