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Introduction

Quantum computing (QC) has shown enormous promise for solving classes of problems for
which a quantum algorithm can obtain a speedup (advantage) over the classical counterpart.
Such a speed up would be extremely desirable to be exploited in favor of classical,high demand-
ing in computational resources, simulations of electromagnetic wave propagation in plasma.
We propose a formalism, appropriate for application of Quantum Computation methods in
plasma electromagnetic wave propagation, based on the Schrodinger representation of Maxwell
Equations for a cold, homogeneous, collision-less, two species magnetized plasma.

The "quantal" electromagnetic picture retains all the attributes of classical theory whereas pro-
vides new insights in the framework of plasma electrodynamics as well as to other quantum-

based descriptions.
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Quantum Computation
In QC, the fundamental carrier of information is named quantum bit or qubit and it is repre-

sented as vector state in Hilbert space .77 that reflects a two-level quantum system.
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The prowess of QC can be summarized in the following qubit properties [1].
e Propabilistic nature: Performing a measurement with the projective operator Py = |0) (0| in
qubit (1) we obtain
al0) 2
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e Superposition: If we allow n qubits to interact the combined Hilbert space is produced

through tensor product 5 = ®*".74. As a result, the computational basis set in the combined
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space consists of 2" elements.
211
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¢ Entanglement: Hilbert space .7#’ contains non-separable states.

Ay) € # = |y) £ Q)|vi), VW) € 7
=1

Finally, the evolution of quantum system is provided by Schrodinger equation and specifically

by the Hermitian generator of dynamics A = H' which corresponds to the energy operator.
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Simulation of quantum evolution (2) for H = 21;21 H,y can be accomplished incorporating p-
order product formulas S(z). Assuming, time step #/r we want to construct unitary gates S(z/r)

for a quantum simulation with Trotter error
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Maxwell Equations for Plasma

Maxwell equations in temporal domain for cold, homogeneous, magnetized plasma, consisted

of electrons and ions read
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A 5 u(r,t)dt  (4)

the Maxwell operator M and matrices Wy, G have the form
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The electric susceptibility kernel K(¢) is given as
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Maxwell equation (4) obeys the following physical postulates: Determinism, Linearity, Causal-

ity, Locality in space and Time translation invariance.
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Whereas Maxwell equation (4) has the same form with Schrodinger equation (2) it possess sig-
nificant differences:The state vector u = (E,H)” is real, and the generator of dynamics D
does not corresponds to energy operator and it is not a Hermitian.

In order to obtain a conservative system, we extend the electromagnetic system considering the
polarization as an independent entity of electric field £. Such an extension is possible due to the

fact that plasma is a passive medium [2](energy density e(r,t) > e(r,0)).

Jd(wK(w
dlok(@)) > 0 (positive de finite matrix)

Schrodinger Equation for Plasma

The Hermitian representation of (3) in the extended system with auxiliary fields ¢ is
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with definitions
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Hermitian Schrodinger representation of the extended electromagnetic system (5) has been de-
rived though a unitary mapping #/2 : 12,(Q) — L*(Q) due to the pseudo-Hermitian [3] nature
(@) y = (D, W) = (W'D, W'/?¥) = (¢, y) of the system.

YD py(ra). y(r0)=vo. e ©
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Most importantly, we can separate the action of Hermitian and traceless operator D in two

distinct parts.

Dl//(r,t) = bvacW(ryt) +[)disp‘//(rat) = bvacwvac(r»t) +bdispl//(r7t) (7N
Conclusions

e We have constructed a Hermitian Schrodinger representation of Maxwell equations for
plasma that admits unitary evolution. The inner product (y|y) denotes the generalized electro-

magnetic energy.
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e In that way a generalized Poynting Theorem can be constructed with Dirichlet boundary
conditions.
de
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e The RSW vector is a proper complexification only for vacuum and inhomogeneous dispersion-
less cases [4].

e The separation of generator of evolution D = D, + Dyq p proposes a Trotterization procedure
for simulation of evolution. In addition, the evolution operator belongs to SU(15) an attribute
that can improve the error (3) of Trotterization [5].

e A quantum simulation in a discetized 3D lattice with N nodes can be implemented with

log, N +4 qubits.
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