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Introduction

Quantum computing (QC) has shown enormous promise for solving classes of problems for

which a quantum algorithm can obtain a speedup (advantage) over the classical counterpart.

Such a speed up would be extremely desirable to be exploited in favor of classical,high demand-

ing in computational resources, simulations of electromagnetic wave propagation in plasma.

We propose a formalism, appropriate for application of Quantum Computation methods in

plasma electromagnetic wave propagation, based on the Schrodinger representation of Maxwell

Equations for a cold, homogeneous, collision-less, two species magnetized plasma.

The "quantal" electromagnetic picture retains all the attributes of classical theory whereas pro-

vides new insights in the framework of plasma electrodynamics as well as to other quantum-

based descriptions.

Keywords: Schrodinger Equation, Plasma Electrodynamics, Quantum Computing, Maxwell

Equations.

Quantum Computation

In QC, the fundamental carrier of information is named quantum bit or qubit and it is repre-

sented as vector state in Hilbert space H2 that reflects a two-level quantum system.

|ψ⟩= a |0⟩+b |1⟩ , |a|2 + |b|2 = 1 (1)

The prowess of QC can be summarized in the following qubit properties [1].

• Propabilistic nature: Performing a measurement with the projective operator P0 = |0⟩⟨0| in

qubit (1) we obtain

|ψ⟩′ = a |0⟩
|a|

, p(0) = |a|2

• Superposition: If we allow n qubits to interact the combined Hilbert space is produced

through tensor product H =⊗×nH2. As a result, the computational basis set in the combined
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space consists of 2n elements.

H ∋ |ψ⟩=
2n−1

∑
j=0

c j | j⟩

• Entanglement: Hilbert space H contains non-separable states.

∃|ψ⟩ ∈ H ⇒ |ψ⟩ ̸=
n⊗

i=1

|ψi⟩ , ∀|ψi⟩ ∈ H2

Finally, the evolution of quantum system is provided by Schrodinger equation and specifically

by the Hermitian generator of dynamics Ĥ = Ĥ† which corresponds to the energy operator.

i
∂ |ψ⟩

∂ t
= Ĥ |ψ⟩ , |ψ⟩= Û |ψ0⟩= exp

{
−itĤ

}
|ψ0⟩ (2)

Simulation of quantum evolution (2) for Ĥ = ∑
Γ
γ=1 Hγ can be accomplished incorporating p-

order product formulas S(t). Assuming, time step t/r we want to construct unitary gates S(t/r)

for a quantum simulation with Trotter error

∥∥∥Sr(t/r)− eitĤ
∥∥∥= O

(
(∑Γ

γ=1
∥∥Hγ

∥∥t)p+1

rp

)
(3)

Maxwell Equations for Plasma

Maxwell equations in temporal domain for cold, homogeneous, magnetized plasma, consisted

of electrons and ions read

i
∂u
∂ t

= D̂u =
[
W−1

0 M̂− iW−1
0

∂G(t)
∂ t

∗
]
u =W−1

0 M̂u− iW−1
0

∫ t

0

∂G(t − τ)

∂ t
u(r,τ)d τ (4)

the Maxwell operator M̂ and matrices W0,G have the form

M̂ = i

 0 ∇×

−∇× 0

 , W0 =

ε0I3×3 03×3

03×3 µ0I3×3

 , W0
−1G =

K(t − τ) 03×3

03×3 03×3


The electric susceptibility kernel K(t) is given as

K(t) = ∑
n=e,i



ω2
pn

ωcn
sinωcnt −ω2

pn
ωcn

(
cosωcnt −1

)
0

ω2
pn

ωcn

(
cosωcnt −1

)
ω2

pn
ωcn

sinωcnt 0

0 0 ω2
pnt


Maxwell equation (4) obeys the following physical postulates: Determinism, Linearity, Causal-

ity, Locality in space and Time translation invariance.
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Whereas Maxwell equation (4) has the same form with Schrodinger equation (2) it possess sig-

nificant differences:The state vector u = (E,H)T is real, and the generator of dynamics D̂

does not corresponds to energy operator and it is not a Hermitian.

In order to obtain a conservative system, we extend the electromagnetic system considering the

polarization as an independent entity of electric field E. Such an extension is possible due to the

fact that plasma is a passive medium [2](energy density e(r, t)≥ e(r,0)).

∂ (ωK̃(ω))

∂ω
> 0 (positive de f inite matrix)

Schrodinger Equation for Plasma

The Hermitian representation of (3) in the extended system with auxiliary fields φ is

i
∂ψ(r, t)

∂ t
=



03×3 icS · p̂ −iωpeA −iωpiA −i
√

ω2
pe +ω2

piC

−icS · p̂ 03×3 03×3 03×3 03×3

iωpeA 03×3 iωceB 03×3 03×3

iωpiA 03×3 03×3 iωciB 03×3

i
√

ω2
pe +ω2

piC 03×3 03×3 03×3 03×3


ψ(r, t) (5)

with definitions

ψ(r, t) =



√
ε0E
B√
µ0√

ε0ωpeφ e
√

ε0ωpiφ i√
ε0(ω2

pe +ω2
pi)φ b


, A =


1 0 0

0 1 0

0 0 0

 B =


0 1 0

−1 0 0

0 0 0

 C =


0 0 0

0 0 0

0 0 1



S = (Sx,Sy,Sz), Sx =


0 0 0

0 0 −i

0 i 0

 Sy =


0 0 i

0 0 0

−i 0 0

 Sz =


0 −i 0

i 0 0

0 0 0



φ e,i =
∫ t

0


cosωce,i(t − τ) sinωce,i(t − τ) 0

−sinωce,i(t − τ) cosωce,i(t − τ) 0

0 0 0

E(r,τ)d τ, φ b =
∫ t

0
CE(r,τ)d τ

Hermitian Schrodinger representation of the extended electromagnetic system (5) has been de-

rived though a unitary mapping W 1/2 : L2
W (Ω)→ L2(Ω) due to the pseudo-Hermitian [3] nature

⟨Φ,Ψ⟩W = ⟨Φ,W Ψ⟩= ⟨W 1/2Φ,W 1/2Ψ⟩= ⟨φ ,ψ⟩ of the system.

i
∂ψ(r, t)

∂ t
= D̂(r)ψ(r, t), ψ(r,0) = ψ0, ψ ∈ L2(Ω) (6)
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Most importantly, we can separate the action of Hermitian and traceless operator D̂ in two

distinct parts.

D̂ψ(r, t) = D̂vacψ(r, t)+ D̂dispψ(r, t) = D̂vacψvac(r, t)+ D̂dispψ(r, t) (7)

Conclusions

• We have constructed a Hermitian Schrodinger representation of Maxwell equations for

plasma that admits unitary evolution. The inner product ⟨ψ|ψ⟩ denotes the generalized electro-

magnetic energy.

E =
1
2
⟨u,Wu⟩+

∫ t

0

∫ s

0

∫
Ω

uT (r,s)
∂G(r,s,τ)

∂ s
u(r,τ)d rd τd s

• In that way a generalized Poynting Theorem can be constructed with Dirichlet boundary

conditions.
∂e
∂ t

+∇ ·S = 0

• The RSW vector is a proper complexification only for vacuum and inhomogeneous dispersion-

less cases [4].

• The separation of generator of evolution D̂ = D̂vac+D̂disp proposes a Trotterization procedure

for simulation of evolution. In addition, the evolution operator belongs to SU(15) an attribute

that can improve the error (3) of Trotterization [5].

• A quantum simulation in a discetized 3D lattice with N nodes can be implemented with

log2 N +4 qubits.

˜|ψ⟩=
14

∑
i=0

N−1

∑
m=0

ai,m |ei⟩⊗ |m⟩
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