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There is considerable interest in applying quantum information science to problems in plasma

physics, even though most magnetic fusion plasmas are well into the classical regime. In some

sense, this is a natural outcome building on the efforts [1], [2] in the 1930’s of connecting

Maxwell equations in a vacuum with the Dirac equation for a massless free particle. From the

unitary qubit lattice algorithm (QLA) of Yepez [3] for the Dirac equation, we [4], [5] extended

[3] to handle electromagnetic pulse propagation in inhomogeneous refractive media. QLA con-

sists of an interleaved sequence of non-commuting unnitary collision-streaming operators acting

on a basis set of qubits which in the continuum limit recover the continuum system of interest

perturbatively. Some potential operators are also introduced to incorporate the non-derivative

terms and one or more of these operators are Hermitian (and not unitary).

In particular, we [6] have shown through both 1D QLA simulations and electromagnetic

theory that the reflection and transmission of a pulse incident normally onto a (continuous)

dielectric boundary agrees with the standard boundary value plane wave Fresnel conditions

except that our initial value problem will have a transmitted electric field amplitude that is

augmented over the Fresnel amplitude by the factor
√

n2/n1 of the two media refractive indices.

Here we present some QLA simulations for the scattering of a 1D electromagnetic pulse off

an isolated scalar dielectric object, with refractive index n = n(x,z). The full Maxwell equations

can be represented by an 8-spinor wavefunction [7]. The qubit basis set is just that derived from

the Riemann-Silberstein-Weber vectors [7], F±:

Ψ
± =


−F±x ± iF±y

F±z
F±z

F±x ± iF±y

 , with F± = n(x)E± i
B
√

µ0
. (1)

For pulse propagation in the x-direction, the time evolution of the qubit equation is deter-

mined just from this 8-qubit representation since the collision operator must entangle different
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qubit basis elements. However, in z-propagation we run into the problem that the time and spa-

tial derivative of the qubits couple the same qubit elements. Thus, to devise a unitary collision

operator we must double the number of qubits to finish with a 16-qubits QLA [5].

We first consider the scattering of a 1D electromagnetic pulse, propagating in the x-direction,

as it interacts with a localized dielectric cylinder, Fig. 1. During the propagation in the vacuum

(n1 = 1), the only non-zero field components are Ey(x, t) and Bz(x, t)

Figure 1: (a) the dielectric cylinder n(x,z), (b) The Ey of the initial electromagnetic pulse .

As the 1D pulse interacts with the 2D dielectric cylinder of higher refractive index, the im-

mediate reflected ring of Ey is negative, as seen in Fig. 2a, echoing the typical 1D Fresnel jump

conditions for plane waves. The 2D nature of the scattering leads to the outgoing reflected cir-

cular pulse propagating back into medium n1.

As the 1D pulse scatters and penetrates the 2D dielectric, the symmetry breaking will generate

a Bx(x,z, t) field so that ∇ ·B = 0. A snapshot of this Bx-field is shown in Fig. 2b. Away from the

dielectric cylinder the pulse retains its speed and structure. In this region no symmetry breaking

occurs and automatically ∇ ·Bz(x, t)ŷ = 0 without the need of generating a Bx component. Fig.

2b shows the self-consistently generated Bx field, showing the dipole structure quite clearly in

the outer wavefront ring.

The later stages of the Ey field are shown in Fig. 3. The somewhat complex wavefronts

are due to internal reflections of the incident pulse within the dielectric cylinder, followed by

transmission/re-radiation of the pulse out into region n1.

In Fig 4 we consider a smaller width initial pulse now propagating towards a conic dielectric

scatterer which peaks at n2,max = 3 but has gentler variations in n(x,z) in both x and z. Because

the slopes are very weak at the base of the dielectric cone, there is very little reflection in Ey from
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Figure 2: (a) Early stage of scattering of Ey, (b) The generation of Bx field

Figure 3: (a) Later stages of scattering of Ey, (b) The Ey(x,z, t) at the end of the QLA simulation.

Figure 4: (a) Early stage of scattering of Ey, (b) The Ey(x,z, t) at the end of the QLA simulation.
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this region. On comparing with a similar evolution time for scattering from a dielectric cylinder,

Fig. 3a, there is no outer ring of substantial Ey < 0 in Fig. 4a. As the pulse moves closer to the

apex of the cone, the refractive index gradients are considerably steeper resulting in a reflected

circular pulse. On comparing Fig. 4b with Fig. 3b we see negligible internal bouncing of the

pulse within the dielectric cone. For the dielectric cylinder one still finds sloshing within the

dielectric along with the accompanying emitted wave fronts.

Finally we comment on the perturbative parameter introduced in QLA. Because the 2D QLA

consists of 16 interleaved unitary collision/streaming operators their explicit evaluation in Math-

ematica requires the introduction of a perturbation parameter ε into the collison angles in order

to complete the required algebra. In the continuum limit we recover the full Maxwell equations

to O(ε2). In our earlier QLA for the nonlinear Schrodinger equation (NLS), this ε was related

to the amplitdue of the wave function. Here, in Maxwell equations, it is found from simulations

that ε is related directly to the speed of pulse propagation in medium 1. For NLS there was a

window [εL,εU ] in which QLA very accurately recovered all the soliton-soliton collision of the

exactly soluble NLS [8]. However from the QLA simulations for Maxwell equations we recover

the correct electromagnetic scattering behavior for arbitrary ε within the window [0.01,1.00],

where the limit ε = 1 is the maximum permitted value for CFL number for numerical stability.

Future work will be to generalize the QLA to handle tensor dielectric media and the cold

plasma dispersion relation.
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