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Abstract. The propagation of electrostatic acoustic waves is considered in an electron-positron plasma

consisting of inertial electrons, beam electrons, inertial positrons, and suprathermal hot electrons. We

see that suprathermality and the physical conditions of beam electrons and positrons affect the nonlinear

properties and existence domain of electrostatic solitray waves.

1. Introduction. Electrostatic waves are commonly generated in high-energy astrophysical

plasmas such as pulsars and microquasars having electron populations with distinct temper-

atures [1], which may also contain a fraction of magnetic field-aligned beam electrons [2] and

positrons [3], while hot electrons seem to follow a suprathermal κ-distribution [4]. We therefore

consider the nonlinear formation of electrostatic acoustic solitary waves in an electron-positron

plasma that consists of an electron fluid, a suprathermal hot electron background, an electron

beam, and a positron fluid. We look at how the superthermality of electrons and the physical

conditions of positrons [5] and electron beams [6] change the nonlinear properties and existence

domain of electrostatic solitary waves.

2. Fluid Model. We consider a collisionless plasma model consisting of inertial electrons (‘e’),

inertial positrons (‘p’), and beam electrons (‘b’) described by the following fluid equations:
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which are coupled via Poisson’s equation to stationary ions and hot suprathermal electrons

described by a κ-distribution function:
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We normalized all quantities as follows: electron density n
.
= ne/ne,0, electron velocity u

.
=

ue/cth, positron density np
.
= np/np,0, positron velocity up

.
= up/cth, beam density nb

.
= nb/nb,0,

beam velocity ub
.
= ub/cth, electric potential φ

.
= φ/(kBTh/e), time t

.
= tωpc, and space x

.
= x/λ0;

while the parameters are define by α ≡ nh,0/ne,0, γ ≡ np,0/ne,0, β ≡ nb,0/ne,0, equilibrium beam
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Figure 1: The upper limit for the Mach number (M2) of positive potential solitary waves as a function of κ for

different U0 (left panel), and a function of U0 for different β (right panel). The remaining parameters are κ = 2,

α = 1.2, β = 0.1, γ = 0.01, unless specified.

speed U0 ≡ ub,0/cth, c2
th ≡ kBTh/me, ω2

pc ≡ ne,0e2/ε0me, and λ 2
0 ≡ ε0kBTh/ne,0e2, where ni,0

is the unperturbed density of i species, Th is the hot electron temperature, kB the Boltzmann

constant, me the electron mass, and ε0 the permittivity constant.

3. Linear and Nonlinear Waves. Linearizing Eqs. (1)–(3), substituting into Poisson’s equation,

and restricting up to the first order result in the following linear dispersion relation:
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Without suprathermal and beam electrons, it reduces a dispersion relation derived by Ref. [7].

Transforming Eqs. (1)–(3) into a stationary frame traveling at a speed (Mach number) M,

so ξ = x−Mt, resulting in u = M(1−1/n), u = M −
(

M2 +2φ
)1/2

, up = M(1−1/np), up =

M −
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(
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.

Substituting them into Poisson’s equation and then integrating yield a nonlinear pseudo-energy

balance equation:
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with the “Sagdeev” pseudopotential Ψ(φ) defined by
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Soliton existence domain. To propagate solitary waves, we should impose F1(M)=−Ψ′′(φ)|φ=0 >

0 that leads to a lower limit for the Mach number F1(M) =
α(κ− 1

2 )

κ−3
2

− 1
M2 − γ

M2 − β
(M−U0 )2 . More-

over, an upper limit for the Mach number is obtained by F2(M) = Ψ(φ)|φ=φmax
> 0, so reality

of the density variables correspond to the negative potential φmax(−) = −M2/2 for U0 ≤ 0 and
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Figure 2: Variation of the pseudopotential Ψ(φ) with the electrostatic potential φ (left panels) and φ with position

ξ (right panels) for different values of κ (1st row; where α = 1.2, β = γ = 0.01, U0 = 0.1, M = 0.3), beam speed

U0 (2nd; κ = 2, α = 1.2, γ = 0.01, M = 0.3), the beam-to-electron density ratio β (3rd; κ = 2, α = 1.2, γ = 0.01,

M = 0.3), and the positron-to-electron density ratio γ (4th row; κ = 2, α = 1.2, U0 = 0.1, β = 0.01, M = 0.3).
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−(M −U0)
2/2 for U0 > 0, and the positive potential φmax(+) = M2/2. We obtain for negative

potential solitons (φ ≤ 0) and U0 > 0:
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and for positive potential solitons (φ > 0):
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The lower limit (M1) for solitary waves is constrained by F1(M) and M >U0, whereas the upper

limit (M2) is provided by F2(M). The solitary waves propagate between M1 and M2 (see Fig. 1).

4. Parametric Effects. To study the properties of electrostatic solitary waves, we employed a

numerical integration method to solve Eqs. (6) and (7) (under the condition βU0 ≪ 1 [8]), which

help us investigate parametric effects on the wave structures. As seen in Fig. 2, the positive

amplitudes increase with strong superthermality (low κ) in hot electrons. The amplitudes of

positive solitons decline with increases in the beam speed and density. The positive electrostatic

amplitude rises with increasing the positron density relative to the inertial electron density.

5. Summary. The existence domain of positive potential solitary waves shrinks with increases

in superthermality (reducing κ; see Fig. 1) and the positron density, and decreases in the beam

speed and density. Stronger superthermality (lower κ), higher positron densities, and lower

beam densities lead to higher positive potential soliton amplitudes at a fixed Mach number as

seen in Fig. 2. Our results improve our understanding of electrostatic solitary waves in electron-

positron astrophysical plasmas, where field-aligned beams and suprathermal electrons exist.
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