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Abstract. The propagation of electrostatic acoustic waves is considered in an electron-positron plasma
consisting of inertial electrons, beam electrons, inertial positrons, and suprathermal hot electrons. We
see that suprathermality and the physical conditions of beam electrons and positrons affect the nonlinear

properties and existence domain of electrostatic solitray waves.

1. Introduction. Electrostatic waves are commonly generated in high-energy astrophysical
plasmas such as pulsars and microquasars having electron populations with distinct temper-
atures [1], which may also contain a fraction of magnetic field-aligned beam electrons [2] and
positrons [3], while hot electrons seem to follow a suprathermal x-distribution [4]. We therefore
consider the nonlinear formation of electrostatic acoustic solitary waves in an electron-positron
plasma that consists of an electron fluid, a suprathermal hot electron background, an electron
beam, and a positron fluid. We look at how the superthermality of electrons and the physical
conditions of positrons [5] and electron beams [6] change the nonlinear properties and existence

domain of electrostatic solitary waves.

2. Fluid Model. We consider a collisionless plasma model consisting of inertial electrons (‘e’),

inertial positrons (‘p’), and beam electrons (‘b’) described by the following fluid equations:

one  d(neue) u, du, e d¢
o Tax 0 o TRy T o )

dnp  d(npup) dup dup e 99

_ oup Oty _ €99 2
o T ox Y o T o T T ox ()
ony  d(mpup) dup dup _ e 99
L R L me Ox’ )

which are coupled via Poisson’s equation to stationary ions and hot suprathermal electrons

described by a x-distribution function:
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We normalized all quantities as follows: electron density n = n,/n. 0, electron velocity u =

Ue/ Cr» pOSitron density n, = n, /n, o, positron velocity u, = u,/c,,, beam density ny = np/ny 0,

beam velocity u;, = up,/c;p, electric potential ¢ = ¢ /(kgTj,/e), time t =t @y, and space x = x/Ap;

while the parameters are define by o = 1y, 0/n¢.0, ¥ = 1p.0/Ne,0, B = 1p,0/1¢,0, €quilibrium beam
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Figure 1: The upper limit for the Mach number (M;) of positive potential solitary waves as a function of k for

different Uy (left panel), and a function of Uy for different B (right panel). The remaining parameters are K = 2,

oo=12,8=0.1,y=0.01, unless specified.

speed Uy = up.0/cin, c?h = kgTy/m,, a)I%C = n&()‘e2 /€m,, and Ag = gokpTy, /ne7oez, where n; o
is the unperturbed density of i species, T}, is the hot electron temperature, kg the Boltzmann

constant, m, the electron mass, and &y the permittivity constant.

3. Linear and Nonlinear Waves. Linearizing Eqs. (1)—(3), substituting into Poisson’s equation,

and restricting up to the first order result in the following linear dispersion relation:
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Without suprathermal and beam electrons, it reduces a dispersion relation derived by Ref. [7].
Transforming Eqs. (1)—(3) into a stationary frame traveling at a speed (Mach number) M,

so & =x—Mt, resultinginu=M(1—1/n),u=M — (M2—|—2¢)1/2, up=M(1—1/np), up =

M — (M2 —2¢)"?, wy = M[1 = 1/ny(1 — Up/M)] and u, = M — (M? +2¢ — 2MUo + UZ)""*.

Substituting them into Poisson’s equation and then integrating yield a nonlinear pseudo-energy
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with the “Sagdeev” pseudopotential ¥(¢) defined by
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Soliton existence domain. To propagate solitary waves, we should impose F1 (M) = —¥"(¢)|9—0 >

. _ak=3) 1y _ B -
0 that leads to a lower limit for the Mach number F} (M) = K_ % WM T T More

balance equation:

W(9) =(1+o+p—7)¢+M

+B(M—Uy)*

over, an upper limit for the Mach number is obtained by F>(M) = W¥(9)|p—pn., > 0, so reality
of the density variables correspond to the negative potential @,y (—) = —M? /2 for Uy < 0 and
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Figure 2: Variation of the pseudopotential ¥(¢) with the electrostatic potential ¢ (left panels) and ¢ with position
& (right panels) for different values of x (1st row; where o = 1.2, B =y =10.01, Uy = 0.1, M = 0.3), beam speed
Up 2nd; k =2, & = 1.2, y=0.01, M = 0.3), the beam-to-electron density ratio f (3rd; k =2, oo = 1.2, y = 0.01,
M = 0.3), and the positron-to-electron density ratio y (4throw; k =2, & = 1.2, Uy = 0.1, B =0.01, M = 0.3).



48th EPS Conference on Plasma Physics P2b.406

—(M —Uy)?/2 for Uy > 0, and the positive potential Pmax(+) = M? /2. We obtain for negative

(1)
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potential solitons (¢ < 0) and Uy > 0:
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and for positive potential solitons (¢ > 0):
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The lower limit (M) for solitary waves is constrained by F} (M) and M > U, whereas the upper

+B(M—Up)? 9)

limit (M>) is provided by F>(M). The solitary waves propagate between M and M, (see Fig. 1).

4. Parametric Effects. To study the properties of electrostatic solitary waves, we employed a
numerical integration method to solve Egs. (6) and (7) (under the condition Uy < 1 [8]), which
help us investigate parametric effects on the wave structures. As seen in Fig. 2, the positive
amplitudes increase with strong superthermality (low «) in hot electrons. The amplitudes of
positive solitons decline with increases in the beam speed and density. The positive electrostatic

amplitude rises with increasing the positron density relative to the inertial electron density.

5. Summary. The existence domain of positive potential solitary waves shrinks with increases
in superthermality (reducing k; see Fig. 1) and the positron density, and decreases in the beam
speed and density. Stronger superthermality (lower k), higher positron densities, and lower
beam densities lead to higher positive potential soliton amplitudes at a fixed Mach number as
seen in Fig. 2. Our results improve our understanding of electrostatic solitary waves in electron-

positron astrophysical plasmas, where field-aligned beams and suprathermal electrons exist.
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