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Abstract
For future tokamak’s disruption predictor, many quanlities are needed besides the high
accuracy, including interpretability, real-time capacity and transferability and so on. In this
research, two breakthroughs are made on the top of the interpretable disruption predictor in
HL-2A, focusing on its real-time capacity and transferability. For the real-time capacity, the
algorithm is accelerated to deal with an input slice within 0.3ms by some adjustments on the
algorithm and the TFLite framework. It is implemented into HL-2A’s plasma control
system(PCS) and gets an accuracy of 89.0% during online test. Some demo shots are also got
where the algorithm predicted the impending disruptions and triggered the SMBI or MGI to
mitigate them. For the transferability, a preliminary disruption predictor is successfully
developed in HL-2M, a newly built tokamak in China. Although only 31 and 23 shots are used
as the training and validation set, respectively, it still gives reasonable outputs on testing set
with the help of data from HL-2A and J-TEXT. In general, HL-2A’s disruption predictor has
proved that deep learning has enough flexibility to meet all kinds of demands along with a high
accuracy and is a good potential choice for future tokamak’s disruption prediction.

1. INTRODUCTION

Disruptions in large-scale future tokamaks are of concern due to their potential harmful
effects on the devices, specifically, electromagnetic loading, thermal loading and runaway
electrons!!). To eliminate the risks, disruption prevention and mitigation techniques are
needed. And disruption predictor takes the responsibility to trigger these techniques on
appropriate timel*].

In the past decades, lots of machine learning-based disruption predictors are developed in
different tokamaks!*!. New algorithms, feature extraction methods and large datasets are
introduced to get better performance on accuracies, prediction advance time and some other
aspects. The feasibility of utilizing machine learning-based disruption predictor to handle the
problem of disruption has been basically validated.

However, as part of the control system of a large-scale scientific construction project like
ITER, the disruption predictor calls for all-around excellent performance. For example, high
accuracy, long prediction advance time and real-time capacity are required to satisfy the
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primary need of triggering the disruption mitigation system!> %71, Good interpretability is also
important to ensure that the algorithm will be reliable and easy to debug in application'® °!. The
capacity of cross-tokamak disruption prediction, or the capacity to be well-trained with limited
data is essential as well, since the algorithm is going to be implemented on a newly-built
tokamak!'% '], There is still a lot of work to do in the field of disruption prediction.

In this research, a series of further investigations are implemented on top of the first
version of HL-2A’s disruption predictor. The aim is to evaluate its potential to perform well in
more aspects besides accuracy. And the result shows that by fully utilizing the flexibility of
deep learning paradigm, the algorithm can perform well on all the four aspects as follows,
accuracy, interpretability, real-time capacity and transferability.

The rest of this paper consists of 4 parts. Section 2 will briefly introduce the first version of
HL-2A’s disruption predictor and the method to interpret its output, which is already described
in previous researches!!? 131, Section 3 will introduce the process of implementing the algorithm
into HL-2A’s PCS and give the result of online testing. Section 4 will try to train a transferable
disruption predictor on a multi-device dataset. A preliminary disruption predictor is
successfully developed on HL-2M, a newly-built tokamak with very limited data. Section 5 is a
brief summary.

2. HL-2A’S DISRUPTION PREDICTOR AND ITS INTERPRETABILITY

The first version of HL-2A’s disruption predictor is proposed in [12]. It has a true positive
rate(TPR) 0f 92.2% and a true negative rate(TNR) of 97.5% on the testing set, which consists of
475 disruptive shots and 1271 non-disruptive shots. A novel 1.5-D CNN + LSTM structure is
used in this algorithm and proves quite helpful for the accuracy.

As for the interpretability, a special node is found in the 1.5D CNN structure. Before this
node, signals from different input channels are dealt with separately for some neural network
layers to eliminate the difference of their temporal structures and statistical distributions. While
after this node, they will be merged into an array and be mixed in subsequent layers. Therefore,
on this node each input channel of algorithm can be evenly disturbed by a gaussian noise and
the corresponding offset of the algorithm’s output will indicate the importance of each input
channel. Both the result of single shot visualization and statistical analysis on a disruption
causes dataset show good coherence with the cause of disruption. More detailed descriptions of
this method can be found in [13].

3. REAL-TIME CAPACITY

The first version of HL-2A’s disruption predictor takes 17ms to analyse an input slice,
exceeding the limitation set by working cycle of HL-2A’s PCS. Therefore, a reduced version is
proposed in [13], which takes 2ms instead. A further promotion is obtained by utilizing TFLite,
an inference framework developed by Google!'*!. TFLite accelerates the computation by
customized optimization for a determined neural network structure and quantization
techniques!'®!. With the help of TFLite, the algorithm can deal with an input slice within 0.3ms.

To test the algorithm’s performance in online environment, an integrated disruption
prediction and mitigation system is established in HL-2A. Figure 1 gives the framework of this
system. The data acquisition system (DAS) gathers all the needed diagnostic signals and sends
them to the PCS. These data are first used to do the position and shape control by the
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corresponding module, in which process some secondary signals are produced. Then these
secondary signals, together with the raw diagnostic signals, are sent to the disruption prediction
module. In HL-2A, the PCS is mainly developed in C language while the disruption prediction
algorithm is developed in Python, so a cross language interaction is required. Thus, there is a
C-based disruption prediction module, which organizes the input data and calls the
Python-based disruption prediction module. Finally, the prediction result is sent back to the
C-based module to decide whether or not a trigger signal should be sent to the disruption
mitigation system.
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Figure 1 Design of the integrated system Figure 2 Vertical displacement induced disruption mitigated by SMBI

The system is firstly validated in open-loop online testing, where the algorithm keeps
running during every discharge in Shot Nos. 38650-39347 of HL-2A. 230 of 240 disruptive
shots are correctly predicted and 32 false alarms are triggered in 142 non-disruptive shots. The
corresponding TPR and TNR are 0.958 and 0.775, respectively. The accuracy is lower than in
the oftline testing, majorly due to two restrictions. For one thing, some input signals are not
available in real-time environment due to some engineering problems. And for the other, the
simplification on neural network structure to realize the real-time computation also brings
degradations.

Closed-loop online testing is also tried in a few shots. Figure 2 gives a demo shot where a
vertical displacement induced disruption is predicted and then mitigated by SMBI.

4. TRANSFERABILITY

Since the researches on disruption prediction aims to provide a reliable algorithm for
future tokamaks, there is an important issue on how to develop the algorithm on a newly-built
tokamak with very limited data available. In this section, HL-2M is selected as the testing
platform, which is a newly-built tokamak with only 81 shots suitable for disruption
prediction!'¢],

To solve the problem of poor training data, J-TEXT and HL-2A’s data are introduced to
provide auxiliary constraints. This mixed dataset makes it possible to train a reliable neural
network on HL-2M. Table 1 and Table 2 give the detailed information about the train,
validation and testing set. The network structure and training strategy are basically same as the
version in [12]. During testing, the algorithm trained on this mixed dataset predicted 17 of 18
disruptive shots and triggered 2 false alarms in 9 non-disruptive shots. Figure 3 shows the
output of algorithm during some example shots. The result confirms that data from exists
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devices are helpful to develop the algorithm on a new device.
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Figure 3 Output of HL-2M’s disruption predictor

Table 2 Detailed information about the input of the HL-2M’s disruption predictor

Signal name Sample Physical meanings signal tag
rate(kHz) HL-2M J-TEXT HL-2A
Ip 1 plasma current 1P 2M ip 1P
Target Ip 1 target plasma current cclP 2M oh_set cclP
Bt 1 toroidal magnetic field BT1 2M bt Bt
Density 1 density of electrons AMW_INT1 02 LIN DEN_CHO06 Densityl
Dh 1 horizontal displacement dh 2M dx FluxDh
Bolometer 1 power of bolometer radiation DBOL 10 AXUV_CA 08 BOLUI10
Mir_Probe_A 10 a pair of symmetric po]oidal MpOl_l 7_24 MA_P OL_CAO 1T Mp01_04
Mir Probe B 10 Mirnov probes Mpol 17 51 MA POL CA19T  Mpol 13
5. SUMMARY

In this research, a series of updates are implemented on HL-2A’s disruption predictor,
bringing it interpretability, real-time capacity and transferability. Since the disruption predictor
in large-scale scientific construction project like ITER calls for all-around excellent
performance. Deep learning seems to be a good potential choice, which has enough flexibility
to adapt to all kinds of demand during future implementation.
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