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Abstract 

For future tokamak’s disruption predictor, many quanlities are needed besides the high 

accuracy, including interpretability, real-time capacity and transferability and so on. In this 

research, two breakthroughs are made on the top of the interpretable disruption predictor in 

HL-2A, focusing on its real-time capacity and transferability. For the real-time capacity, the 

algorithm is accelerated to deal with an input slice within 0.3ms by some adjustments on the 

algorithm and  the TFLite framework. It is implemented into HL-2A’s plasma control 

system(PCS) and gets an accuracy of 89.0% during online test. Some demo shots are also got 

where the algorithm predicted the impending disruptions and triggered the SMBI or MGI to 

mitigate them. For the transferability, a preliminary disruption predictor is successfully 

developed in HL-2M, a newly built tokamak in China. Although only 31 and 23 shots are used 

as the training and validation set, respectively, it still gives reasonable outputs on testing set 

with the help of data from HL-2A and J-TEXT. In general, HL-2A’s disruption predictor has 

proved that deep learning has enough flexibility to meet all kinds of demands along with a high 

accuracy and is a good potential choice for future tokamak’s disruption prediction. 

1. INTRODUCTION 

Disruptions in large-scale future tokamaks are of concern due to their potential harmful 

effects on the devices, specifically, electromagnetic loading, thermal loading and runaway 

electrons[1]. To eliminate the risks, disruption prevention and mitigation techniques are 

needed[2]. And disruption predictor takes the responsibility to trigger these techniques on 

appropriate time[3].  

In the past decades, lots of machine learning-based disruption predictors are developed in 

different tokamaks[4]. New algorithms, feature extraction methods and large datasets are 

introduced to get better performance on accuracies, prediction advance time and some other 

aspects. The feasibility of utilizing machine learning-based disruption predictor to handle the 

problem of disruption  has been basically validated.  

However, as part of the control system of a large-scale scientific construction project like 

ITER, the disruption predictor calls for all-around excellent performance. For example, high 

accuracy, long prediction advance time and real-time capacity are required to satisfy the 
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primary need of triggering the disruption mitigation system[5, 6, 7]. Good interpretability is also 

important to ensure that the algorithm will be reliable and easy to debug in application[8, 9]. The 

capacity of cross-tokamak disruption prediction, or the capacity to be well-trained with limited 

data is essential as well, since the algorithm is going to be implemented on a newly-built 

tokamak[10, 11]. There is still a lot of work to do in the field of disruption prediction. 

In this research, a series of further investigations are implemented on top of the first 

version of HL-2A’s disruption predictor. The aim is to  evaluate its potential to perform well in 

more aspects besides accuracy. And the result shows that by fully utilizing the flexibility of 

deep learning paradigm, the algorithm can perform well on all the four aspects as follows, 

accuracy, interpretability, real-time capacity and transferability. 

The rest of this paper consists of 4 parts. Section 2 will briefly introduce the first version of 

HL-2A’s disruption predictor and the method to interpret its output, which is already described 

in previous researches[12, 13]. Section 3 will introduce the process of implementing the algorithm 

into HL-2A’s PCS and give the result of online testing. Section 4 will try to train a transferable 

disruption predictor on a multi-device dataset. A preliminary disruption predictor is 

successfully developed on HL-2M, a newly-built tokamak with very limited data. Section 5 is a 

brief summary. 

2. HL-2A’S DISRUPTION PREDICTOR AND ITS INTERPRETABILITY 

The first version of HL-2A’s disruption predictor is proposed in [12]. It has a true positive 

rate(TPR) of 92.2% and a true negative rate(TNR) of 97.5% on the testing set, which consists of 

475 disruptive shots and 1271 non-disruptive shots. A novel 1.5-D CNN + LSTM structure is 

used in this algorithm and proves quite helpful for the accuracy. 

As for the interpretability, a special node is found in the 1.5D CNN structure. Before this 

node, signals from different input channels are dealt with separately for some neural network 

layers to eliminate the difference of their temporal structures and statistical distributions. While 

after this node, they will be merged into an array and be mixed in subsequent layers. Therefore, 

on this node each input channel of algorithm can be evenly disturbed by a gaussian noise and 

the corresponding offset of the algorithm’s output will indicate the importance of each input 

channel. Both the result of single shot visualization and statistical analysis on a disruption 

causes dataset show good coherence with the cause of disruption. More detailed descriptions of 

this method can be found in [13]. 

3. REAL-TIME CAPACITY 

The first version of HL-2A’s disruption predictor takes 17ms to analyse an input slice, 

exceeding the limitation set by working cycle of HL-2A’s PCS. Therefore, a reduced version is 

proposed in [13], which takes 2ms instead. A further promotion is obtained by utilizing TFLite, 

an inference framework developed by Google[14]. TFLite accelerates the computation by 

customized optimization for a determined neural network structure and quantization 

techniques[15]. With the help of TFLite, the algorithm can deal with an input slice within 0.3ms. 

To test the algorithm’s performance in online environment, an integrated disruption 

prediction and mitigation system is established in HL-2A. Figure 1 gives the framework of this 

system. The data acquisition system (DAS) gathers all the needed diagnostic signals and sends 

them to the PCS. These data are first used to do the position and shape control by the 
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corresponding module, in which process some secondary signals are produced. Then these 

secondary signals, together with the raw diagnostic signals, are sent to the disruption prediction 

module. In HL-2A, the PCS is mainly developed in C language while the disruption prediction 

algorithm is developed in Python, so a cross language interaction is required. Thus, there is a 

C-based disruption prediction module, which organizes the input data and calls the 

Python-based disruption prediction module. Finally, the prediction result is sent back to the 

C-based module to decide whether or not a trigger signal should be sent to the disruption 

mitigation system. 

The system is firstly validated in open-loop online testing, where the algorithm keeps 

running during every discharge in Shot Nos. 38650-39347 of HL-2A. 230 of 240 disruptive 

shots are correctly predicted and 32 false alarms are triggered in 142 non-disruptive shots. The 

corresponding TPR and TNR are 0.958 and 0.775, respectively. The accuracy is lower than in 

the offline testing, majorly due to two restrictions. For one thing, some input signals are not 

available in real-time environment due to some engineering problems. And for the other, the 

simplification on neural network structure to realize the real-time computation also brings 

degradations. 

Closed-loop online testing is also tried in a few shots. Figure 2 gives a demo shot where a 

vertical displacement induced disruption is predicted and then mitigated by SMBI. 

4. TRANSFERABILITY 

Since the researches on disruption prediction aims to provide a reliable algorithm for 

future tokamaks, there is an important issue on how to develop the algorithm on a newly-built 

tokamak with very limited data available. In this section, HL-2M is selected as the testing 

platform, which is a newly-built tokamak with only 81 shots suitable for disruption 

prediction[16]. 

To solve the problem of poor training data, J-TEXT and HL-2A’s data are introduced to 

provide auxiliary constraints. This mixed dataset makes it possible to train a reliable neural 

network on HL-2M. Table 1 and Table 2 give the detailed information about the train, 

validation and testing set. The network structure and training strategy are basically same as the 

version in [12]. During testing, the algorithm trained on this mixed dataset predicted 17 of 18 

disruptive shots and triggered 2 false alarms in 9 non-disruptive shots. Figure 3 shows the 

output of algorithm during some example shots. The result confirms that data from exists  

Figure 1 Design of the integrated system Figure 2 Vertical displacement induced disruption mitigated by SMBI 
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devices are helpful to develop the algorithm on a new device. 

 

5. SUMMARY 

In this research, a series of updates are implemented on HL-2A’s disruption predictor, 

bringing it interpretability, real-time capacity and transferability. Since the disruption predictor 

in large-scale scientific construction project like ITER calls for all-around excellent 

performance. Deep learning seems to be a good potential choice, which has enough flexibility 

to adapt to all kinds of demand during future implementation. 
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Device 
Training Validation Testing 

D ND D ND D ND 

HL-2A 1532 4317 364 470 - - 

J-TEXT 1477 4091 415 1221 - - 

HL-2M 25 6 17 6 18 9 

Signal name 
Sample 

rate(kHz) 
Physical meanings 

signal tag 

HL-2M J-TEXT HL-2A 

Ip 1 plasma current IP_2M ip IP 

Target_Ip 1 target plasma current ccIP_2M oh_set ccIP 

Bt 1 toroidal magnetic field BT1_2M bt Bt 

Density 1 density of electrons AMW_INT1_02 LIN_DEN_CH06 Density1 

Dh 1 horizontal displacement dh_2M dx FluxDh 

Bolometer 1 power of bolometer radiation DBOL_10 AXUV_CA_08 BOLU10 

Mir_Probe_A 10 a pair of symmetric poloidal 

Mirnov probes 

Mpol_17_24 MA_POL_CA01T Mpol_04 

Mir_Probe_B 10 Mpol_17_51 MA_POL_CA19T Mpol_13 

Figure 3 Output of HL-2M’s disruption predictor 

Table 1 Shot numbers for training, validation, and 

testing of the HL-2M’s disruption predictor. D 

means disruptive and ND means non-disruptive 

Table 2 Detailed information about the input of the HL-2M’s disruption predictor 
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