

Sources of electrons, positrons and gamma-rays from lasers within plasma channels

M. Vranic¹, B. Martinez¹ and R. Babjak^{1,2}

¹ *GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon*

² *Institute of Plasma Physics, Czech Academy of Sciences, Prague, Czechia*

The next generation of pulsed lasers will have intensities in excess of 10^{23} W/cm². While propagating through a pre-formed plasma channel, a laser of such intensity allows for direct laser acceleration (DLA) of leptons in the radiation reaction dominated regime. The DLA scheme has already been demonstrated to provide high-charge electron beams (at a \sim nC level) with moderate laser intensities ($\sim 10^{20}$ W/cm²). In this work, we show what can be accomplished with near-future laser facilities.

We have found that increasing the laser power is bound to augment the charge content even further. The field structure formed due to electron beam loading allows for accelerating positrons. What is more, the interaction in the radiation dominated regime will provide a high flux of emitted photons, in hard x-ray and gamma-ray range. These photons can then be used as a seed for electron-positron pair creation, as well as a radiation source for applications.

This work was supported by FCT grants CEECIND/01906/2018, PTDC/FIS-PLA/3800/2021, FCT UI/BD/151560/2021 and ERC-2015-AdG Grant 695088. We acknowledge PRACE for granting access to MareNostrum in BSC, Spain.