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Coronal magnetic field models have to rely on extrapolation methods using photospheric
magnetograms as boundary conditions. In recent years, due to the increased resolution of ob-
servations and the need to resolve non-force-free lower regions of the solar atmosphere, there
have been increased efforts to use MHS field models instead of force-free methods. Although
numerical methods can deal with non-linear problems and provide accurate models, analytical
three-dimensional MHS equilibria can be used as a numerically relatively “cheap” complemen-
tary method. We discuss a family of analytical MHS equilibria that allows for a transition from

a non-force-free to a force-free region based on the MHS equations
JXxB—=Vp—pV¥ =0, V x B = wyj, V-B=0

and the current density being represented by uoj = aB+V x (Fz) with F = f(z)B; (see e.g. [1,
2]) using standard notation. Such that the dependence of the non-force-free part of j with height
zis controlled by f(z). Neukirch and Raststitter (1999) [3] have shown that for a magnetic field
of the form

B =V x[Vx(®2)] +aV x (Pz)

a solution is given by

d = // ®(2: ky, ky) exp[i (kux + kyy)] dkodky (1)

where ® obeys the differential equation

d*® _
e S+ [P =K+ f(2)] @ =0 2)
with k2 = k)% + k§ (see [4]). If periodic boundary conditions in x and y are imposed k, and k,
take on discrete values and the integrals in Eq. (1) are represented by infinite sums. Neukirch
and Wiegelmann (2019) [4] have used f(z) = a[l — btanh ((z —z0)/Az)] where a and b control
the magnitude of f in the domains AZO < 0 and Z" > 0, z¢ is the centre of the transitional
region and Az controls the width over which the transition happens. Hence, (2) becomes

d*®

dz?

— + |a* —k*(1 —a) — k*abtanh (Z;ZZO)}ci):O 3)
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Neukirch and Wiegelmann (2019) [4] have used the hypergeometric function »Fj (a, b, c;z) (see
[5]) to find a solution of (3) given by

+Bn70 (1-n)72F (7— S+1,7-6,1 —25,11)
with 7= /C; and 6 = /Cy and Cy » = § [k* (1 — a £ ab) + &*] with k = kAz and & = Az. The
constants A and B are determined by the boundary conditions. While routines for the calculation
of the hypergeometric function ,F| are available, these can affect both the speed and the accu-
racy of the calculations. Therefore, we look into the asymptotic behaviour of this solution in or-

der to approximate it through exponential functions aiming to improve the numerical efficiency.

We define = %. For small Az the value l
2 f(z) =1,

of the hyperbolic tangent depends on the sign = = ~1@) = a-exp(-x2)
f(z) = a-[1 — b-tanh((z—2,)/Az)]

of its argument. Hence, we distinguish be-

tween z —zo > 0 and z —z9 < 0. Eq. (3) then

f(z)

reduces to

d*d

P [@* —k*(1—a*ab)|®=0 ()

where we have +ab for positive z — zo and

—ab for negative z —zo . We define

_4C, — o — 12 (1 —a:l:ab) Figure 1: From [4]. Different versions of f(z) . The

exponential profile was introduced by Low (1991, 1992)
We define +/C. = & and +/C_ = y and as- [1, 2] and is applied successfully frequently. The hyper-

bolic tangent profile allows for more flexibility and unlike

sume C4,C_ > 0. A solution of Eq. (4) is then
the Low solution reaches a purely force-free state eventu-

given by ally,

& Aexp(20z) +Bexp(—28z), z—z0>0
A’sinh (2yz) + B'cosh (2yz), z—20<0
We consider a coordinate transformation and apply the following boundary conditions: (1) As z
goes to infinity we want ® to vanish. (2) We want ® to be a continuously differentiable function.
(3) We want ® = 1 at z = 0 = z,,, < 20. Then we have
cB:l exp(—%(z—zo)), 7—20>0

D .
%smh (%(ZO —Z)) + cosh (i—z(zo —z)) , 2—z20<0
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Figure 2: ® and d®/dz forn =10, o = 0.5, a=0.24, b = 1.0, z9 = 0.2 and Az = 0.02.

and
o] %exp<—%(z—zo)>, 2—2>0
D %Z_ZCOSh (i—’;(z()—z)>+i—7;sinh(g(z()—z)), z—720<0

In Figure 2 we see the asymptotic solution in red and the analytic solution in blue plotted for
the tenth Fourier mode in an MHS setting (a = 0.24, a = 0.5). The largest difference occurs
around zo and generally in the MHS part of the model rather than in the force-free part of the
model. While the maximum errors of order of 1 in the derivative are large - even when put in
relation to the values of the function itself - we keep in mind that we are more interested in
the error that occurs in the field lines and in the plasma parameters when calculated with the
red instead of the blue function. In Figure 3 we see the maximum absolute difference between
the plasma parameters calculated with the exact solution and calculated with the asymptotic
solution. The red graph has been calculated with Az = 0.1, blue with Az = 0.05 and green with
Az = 0.02. We see that the error in pressure and density are of the magnitude of 10~* and 1073,
respectively. For both quantities the error decreases with decreasing value of Az. This implies
that we are able to use Az to control the error in the plasma parameters. In this setting 0.01 on
the z—scale (so relevant for zg and Az) corresponds to 100 kilometres in the solar atmosphere.
So far, we have modelled magnetic field lines on periodic boundary conditions. The calcula-
tion using the asymptotic @ is at least six times faster than using the original solution and
component-wise comparison of the magnetic field vectors for the exact and the asymptotic
model has shown that their average difference is of the order of 107°. In conclusion, we are us-

ing a magnetic field model for the solar atmosphere that includes the transition from non-force-
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free to force-free (from photosphere to corona) using a special function that allows for more

flexibility than commonly used methods. We substituted the exact solution with its asymptotic

approximation, which improved the efficiency of the model without compromising on accuracy.
We plan to test the code with different

boundary magnetic fields, e.g. unbalanced or Maximum Pressure Difference
3.0x10*
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multi-source. Ultimately, we intend to apply

. 2.5x10*
our model to observational data and to com-

2.0x10*
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pare those results with results obtained using
solutions for other functions f(z) (e.g. [1,2]). "
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Figure 3: Maximum differences in pressure and density
between the two models with a = 0.5, a =0.24, b= 1.0,
nresol =30, nf =20, zo = 0.4, Az=0.1,0.05,0.02. The

X axis represents the height z from photosphere to corona.



