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Introduction

For nearly a century, Langmuir probes have been the instrument of choice for measuring basic

state parameters of plasma, such as the density, temperature and plasma potential. In that pe-

riod numerous experiments and theories have been reported, with the objective of constructing

better inference techniques for this relatively simple instrument. The number of studies made

speaks to the importance of this diagnostic tool in lab, and more recently, in space plasma. The

continuing work on this topic also speaks to the difficulty of accurately interpreting measure-

ments made with this instrument in terms of physical parameters. The challenge stems from

the fact that Langmuir probes don’t directly measure the physical parameters of interest, but

rather currents as a function of bias voltages. The determination of physical plasma parame-

ters of interest, such as density and temperature, therefore requires models which relate probe

current-voltage characteristics to plasma state variables, in order to solve this inverse problem.

Until now, the only models used in practice, were based on analytic expressions obtained from

theory, in which simplifying assumptions were made, in order to be analytically tractable. In

recent years, however, sophisticated computer models have been developed to calculate probe

characteristics with more physical processes, and more realistic geometries than what can be

accounted for analytically. With such models, the direct calculation of probe characteristics,

given plasma and satellite state variables, is relatively straightforward. In principle, the inverse

problem consisting of inferring plasma state variables from characteristics, could be solved it-

eratively by carrying out simulations while fitting assumed plasma and satellite conditions, to

measured characteristics. This approach is however not practical in actual data analysis, due to

the considerable computing resources required in simulations. The solution explored here con-

sists of using computer simulations to construct “solution libraries” consisting of parameterized

computed probe characteristics along with the corresponding plasma, satellite and instrument

conditions assumed in the simulations. Multivariate regression techniques are then applied to

train and validate models using synthetic data from these solution libraries. Models trained

over a given range of plasma parameters, can then be used to quickly infer physical parameters
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from characteristics. An added advantage of adopting a machine learning approach, whereby

trained models are tested on validation sets distinct from the training sets, is that they naturally

yield inference uncertainties, or confidence intervals; a product which is not available from ana-

lytic inference techniques. Yet another feature of the simulation approach, is that it is generally

straightforward to add physical effects or to modify simulations, to adapt to a particular geom-

etry and plasma environment.

Direct solution: Simulations and construction of solution libraries
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Three-dimensional kinetic simulations are made for space en-

vironment conditions representative of satellites in low Earth or-

bit (LEO), using the International Reference Ionosphere (IRI)

model, assuming different times, latitudes, longitudes, and alti-

tudes. Computed currents collected, with input parameters used

in the simulations, are recorded in a solution library; that is, a

synthetic data set to be used in supervised training.

Inverse problem: Regression-based model training and validation
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Two regression techniques are considered. Radial Basis Func-

tion regression is the simplest one to implement. Given a training

data set with independent variables (current collected by probes),

parameterized with n-tuples X̄ and dependent variables Y to be

inferred (density, temperature, etc.), selected entries, or nodes of

the set are used to “interpolate” dependent variables correspond-

ing for arbitrary values of X̄ , from a linear superposition of a

functions of the Euclidean distance, or L2 norm between X̄ and

selected values X̄i of nodes in the training set:

Ỹ =
N

∑
i=1

aiG(|X̄ − X̄i|)Yi,

where ai are interpolation coefficients, Ỹ is the interpolated, or

inferred value, G is a suitable interpolating function, the selected

X̄i are interpolating centres, and Yi are known dependent vari-

ables at the centres. The second technique considered uses deep learning neural networks. It
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is a little more complicated than RBF, but it is more general and powerful, especially when

working with very large data sets.

Application 1: Two spherical probes at fixed bias voltages
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In this example, we assess the possibility of inferring a satel-

lite potential from a 2-tuple of currents collected by two spherical

probes at fixed bias voltages. A training, and a distinct validation

data set are constructed from kinetic simulations, as described

above, to train and validate RBF inference models for the satel-

lite floating potential V f , and ne/
√

TeV , where TeV is the electron

temperature in eV. These satellite and plasma parameters are of

interest because, in the orbital motion limited (OML) approxi-

mation, when currents I1 and I2 are measured with fixed voltages

V1 and V2, it is possible to derive the following expressions:

V f +TeV =
Vb1I2 −Vb2I1

I1 − I2
,

and
ne

TeV

=
1

er2

√

me

8πe

(

I1 − I2

Vb2 −Vb1

)

,

where r is the radius of the assumed spherical Langmuir probe, and e is the elementary charge.

These analytic expressions are found to produce good approximations for V f and ne/
√

TeV in

the left hand sides. These approximations in turn can be improved by combining them with

RBF regression. In this “boosting”1 approach, RBF is effectively used to model the discrepancy

between the analytic expressions and known values in the training set, and to apply a correction.

The figures above show a hypothetical setup of such an instrument on a satellite, with correlation

plots of the inferred floating potential without (top right), and with added noise (lower corner

left) to the validation set. A correlation plot of inferred ne/
√

TeV is shown in the lower right

corner of the figure.

Application 2: NorSat-1 satellite fixed bias needle probes (mNLP)

The same technique is also applied to infer the electron den-

sity and the floating potential from 4-tuples of currents measured

with four fixed biased needle probes. A solution library is first

constructed from simulation results, consisting of 4-tuples of cur-

rents and plasma parameters assumed in the simulations, for ran-

domly distributed values of a satellite potential, in the range −6

1With boosting two regression techniques are combined, such that one can be seen as correcting the other.
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to −1 V. The solution library is then used to construct a training set consisting of randomly

selected entries, and a validation set, consisting of the remaining entries in the library. Models

are then trained and validated, first on the sole basis of these synthetic data sets. The mod-

els trained with synthetic data are then applied to actual currents measured by the four needle

probes on the NorSat-1 satellite. The correlation plot for the inferred densities against known

densities from the validation set are shown in the last figure, as obtained with different models.

These are the Jacobsen linear fit (JLF)2, JLF corrected with RBF, JLF corrected with a sim-

ple affine transformation, Barjatya’s nonlinear fit (BNLF)3, and neural network. Except for the

original JLF, which overestimates densities by approximately a factor 3, all inferences are in

good quantitative agreement with densities from the validation set, with RMS relative errors

ranging from 14% to 27%. A point noteworthy in this last figure, is the fact that the skill of

the JLF inferences can be increased significantly, by applying a simple affine transformation to

the log of the inferred densities. This is particularly interesting, considering the simplicity of

the JLF technique, and of an affine transformation, compared to the other inference techniques.

For this reason, this simple combined approach, while not necessarily the most accurate, could

very well be the preferred inference technique in practical data processing. Models trained with

synthetic data are now being used to infer electron densities, and satellite potentials from in

situ currents measured in situ, with NorSat-1 fixed bias needle probes. This work is currently in

progress, and will be reported in a forthcoming publication.

Conclusion

A new approach, based on computer simulations and multivariate regression methods, has

been presented with the goal of improving inferences of plasma and satellite physical param-

eters from currents collected by fixed bias Langmuir probes. The approach follows machine

learning procedures, utilizing a solution library consisting of pre-computed currents for spec-

ified plasma conditions. This library is used to construct training and distinct validation sets

with which regression inference models can be trained and assessed for their accuracy. The

advantage of this approach, compared to traditional techniques based on theory and analytic

approximations, is that it can account for more realistic physical processes and geometry. It nat-

urally produces uncertainties in inferences, that are specific to the inference algorithm. It also

enables incremental improvements to inference models, by including more physical processes

and more detailed geometry, as required in a given problem.

2https://doi.org/10.1088/0957-0233/21/8/085902
3https://doi.org/10.1063/1.5022820
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