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Introduction

For nearly a century, Langmuir probes have been the instrument of choice for measuring basic
state parameters of plasma, such as the density, temperature and plasma potential. In that pe-
riod numerous experiments and theories have been reported, with the objective of constructing
better inference techniques for this relatively simple instrument. The number of studies made
speaks to the importance of this diagnostic tool in lab, and more recently, in space plasma. The
continuing work on this topic also speaks to the difficulty of accurately interpreting measure-
ments made with this instrument in terms of physical parameters. The challenge stems from
the fact that Langmuir probes don’t directly measure the physical parameters of interest, but
rather currents as a function of bias voltages. The determination of physical plasma parame-
ters of interest, such as density and temperature, therefore requires models which relate probe
current-voltage characteristics to plasma state variables, in order to solve this inverse problem.
Until now, the only models used in practice, were based on analytic expressions obtained from
theory, in which simplifying assumptions were made, in order to be analytically tractable. In
recent years, however, sophisticated computer models have been developed to calculate probe
characteristics with more physical processes, and more realistic geometries than what can be
accounted for analytically. With such models, the direct calculation of probe characteristics,
given plasma and satellite state variables, is relatively straightforward. In principle, the inverse
problem consisting of inferring plasma state variables from characteristics, could be solved it-
eratively by carrying out simulations while fitting assumed plasma and satellite conditions, to
measured characteristics. This approach is however not practical in actual data analysis, due to
the considerable computing resources required in simulations. The solution explored here con-
sists of using computer simulations to construct “solution libraries” consisting of parameterized
computed probe characteristics along with the corresponding plasma, satellite and instrument
conditions assumed in the simulations. Multivariate regression techniques are then applied to
train and validate models using synthetic data from these solution libraries. Models trained

over a given range of plasma parameters, can then be used to quickly infer physical parameters
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from characteristics. An added advantage of adopting a machine learning approach, whereby
trained models are tested on validation sets distinct from the training sets, is that they naturally
yield inference uncertainties, or confidence intervals; a product which is not available from ana-
lytic inference techniques. Yet another feature of the simulation approach, is that it is generally
straightforward to add physical effects or to modify simulations, to adapt to a particular geom-

etry and plasma environment.

Direct solution: Simulations and construction of solution libraries

Three-dimensional kinetic simulations are made for space en-
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in the simulations, are recorded in a solution library; that is, a

synthetic data set to be used in supervised training.

Inverse problem: Regression-based model training and validation

Two regression techniques are considered. Radial Basis Func-
tion regression is the simplest one to implement. Given a training
data set with independent variables (current collected by probes),
parameterized with n-tuples X and dependent variables Y to be
inferred (density, temperature, etc.), selected entries, or nodes of
the set are used to “interpolate” dependent variables correspond-
ing for arbitrary values of X, from a linear superposition of a
functions of the Euclidean distance, or L? norm between X and

selected values X; of nodes in the training set:
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where a; are interpolation coefficients, ¥ is the interpolated, or

inferred value, G is a suitable interpolating function, the selected
X; are interpolating centres, and Y; are known dependent vari-

ables at the centres. The second technique considered uses deep learning neural networks. It
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is a little more complicated than RBF, but it is more general and powerful, especially when

working with very large data sets.

Application 1: Two spherical probes at fixed bias voltages
In this example, we assess the possibility of inferring a satel-

lite potential from a 2-tuple of currents collected by two spherical ~—- ., _ w,

probes at fixed bias voltages. A training, and a distinct validation | e

data set are constructed from kinetic simulations, as described

above, to train and validate RBF inference models for the satel-

lite floating potential V¢, and n, /v/Tev, where T,y is the electron

temperature in eV. These satellite and plasma parameters are of
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mation, when currents /; and I, are measured with fixed voltages
V1 and V3, it is possible to derive the following expressions:
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where r is the radius of the assumed spherlcal Langmulr probe, and e is the elementary charge.

Vf—l-TeV:

and

These analytic expressions are found to produce good approximations for V and n./+/T,y in
the left hand sides. These approximations in turn can be improved by combining them with
RBF regression. In this “boosting”! approach, RBF is effectively used to model the discrepancy
between the analytic expressions and known values in the training set, and to apply a correction.
The figures above show a hypothetical setup of such an instrument on a satellite, with correlation
plots of the inferred floating potential without (top right), and with added noise (lower corner
left) to the validation set. A correlation plot of inferred n,/+/T,y is shown in the lower right

corner of the figure.
Application 2: NorSat-1 satellite fixed bias needle probes (mNLP)
The same technique is also applied to infer the electron den-

sity and the floating potential from 4-tuples of currents measured

with four fixed biased needle probes. A solution library is first

Inferred density (10°m?)

constructed from simulation results, consisting of 4-tuples of cur-

rents and plasma parameters assumed in the simulations, for ran-

domly distributed values of a satellite potential, in the range —6

'With boosting two regression techniques are combined, such that one can be seen as correcting the other.



48th EPS Conference on Plasma Physics P4a.408

to —1 V. The solution library is then used to construct a training set consisting of randomly
selected entries, and a validation set, consisting of the remaining entries in the library. Models
are then trained and validated, first on the sole basis of these synthetic data sets. The mod-
els trained with synthetic data are then applied to actual currents measured by the four needle
probes on the NorSat-1 satellite. The correlation plot for the inferred densities against known
densities from the validation set are shown in the last figure, as obtained with different models.
These are the Jacobsen linear fit (JLF)Z, JLF corrected with RBF, JLF corrected with a sim-
ple affine transformation, Barjatya’s nonlinear fit (BNLF)?, and neural network. Except for the
original JLF, which overestimates densities by approximately a factor 3, all inferences are in
good quantitative agreement with densities from the validation set, with RMS relative errors
ranging from 14% to 27%. A point noteworthy in this last figure, is the fact that the skill of
the JLF inferences can be increased significantly, by applying a simple affine transformation to
the log of the inferred densities. This is particularly interesting, considering the simplicity of
the JLF technique, and of an affine transformation, compared to the other inference techniques.
For this reason, this simple combined approach, while not necessarily the most accurate, could
very well be the preferred inference technique in practical data processing. Models trained with
synthetic data are now being used to infer electron densities, and satellite potentials from in
situ currents measured in situ, with NorSat-1 fixed bias needle probes. This work is currently in

progress, and will be reported in a forthcoming publication.

Conclusion

A new approach, based on computer simulations and multivariate regression methods, has
been presented with the goal of improving inferences of plasma and satellite physical param-
eters from currents collected by fixed bias Langmuir probes. The approach follows machine
learning procedures, utilizing a solution library consisting of pre-computed currents for spec-
ified plasma conditions. This library is used to construct training and distinct validation sets
with which regression inference models can be trained and assessed for their accuracy. The
advantage of this approach, compared to traditional techniques based on theory and analytic
approximations, is that it can account for more realistic physical processes and geometry. It nat-
urally produces uncertainties in inferences, that are specific to the inference algorithm. It also
enables incremental improvements to inference models, by including more physical processes

and more detailed geometry, as required in a given problem.
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