

Efficient high-order harmonic generation via surface plasma compression with lasers

B.Y. Li^{1,2}, F. Liu¹, M. Chen¹, F.Y. Wu¹, J.W. Wang³, L. Lu¹, J.L. Li¹, X.L. Ge¹, X.H. Yuan¹,
W.C. Yan¹, L.M. Chen¹, Z.M. Sheng^{1,2}, J. Zhang^{1,2}

¹ *Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China*

² *Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China*

³ *State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China*

The efficiency of high-order harmonic generation from a relativistic laser interacting with solid targets depends greatly on surface plasma distribution. The usual method of enhancing efficiency involves tuning the plasma scale length carefully by improving the laser contrast [1,2]. Here, we experimentally demonstrate that efficient harmonics can be achieved directly by compressing large-scale surface plasma via the radiation pressure of a circularly polarized normally incident prepulse. The harmonic generation efficiency obtained by this method is comparable to that obtained with optimized plasma scale length by high-contrast lasers, and the harmonic spectrum plateaus at high orders. Our scheme does not rely on high-contrast lasers and is robust and easy to implement. Thus, it may pave a way for the development of intense extreme ultraviolet sources and future applications with high repetition rates. Moreover, our studies also reveal that the preplasma can be actively tailored into a curved surface using the radiation pressure of a normally incident prepulse. This may also be an efficient way to focus relativistic harmonics [3] or to produce high-order vortex harmonics [4].

- [1] S. Kahaly *et al.* Phys. Rev. Lett. **110**, 175001 (2013).
- [2] F. Dollar *et al.* Phys. Rev. Lett. **110**, 175002 (2013).
- [3] H. Vincenti Phys. Rev. Lett. **123**, 105001 (2019).
- [4] J. W. Wang *et al.* Nat. Commun. **10**, 5554 (2019).