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Abstract 

In this study, we report the developed model of solitary structures associated with whistler 

parallel field in magnetopause. The beam-driven whistler-mode dynamical equation has been 

put up with the expectation that it will expand from noise level due to beam energy to large 

amplitude and then localize due to nonlinear effects due to ponderomotive force. Thus, whistler 

waves will ultimately occur in a turbulent state. The results of the numerical simulation show 

that the intense localized structure and power spectra are considered to be responsible for the 

heating and acceleration of plasma particles. The transverse scale size of the localized structure 

is of the order of electron inertial length. 

I.        Introduction 

Plasma supports a various wave modes like whistler wave mode, alfven wave, magnetosonic 

wave, lower hybrid wave (LHW), upper hybrid wave (UHW) and ion acoustic wave. These 

waves play significant role in the energization and particle acceleration. Whistler waves are 

found to play an eminent role in the astrophysical plasmas. Whistler waves are right-handed 

circularly polarized wave with frequency below the electron cyclotron frequency. In the present 

study, we will study the observations of solitary structures associated with whistler parallel 

field in magnetopause. Evolution of localized structures also represents the transfer of energy 

from larger scale to smaller scale and the corresponding power spectrum has been calculated. 

The formation of the thermal tail of energetic particles is caused by energy distribution at lower 

scales. Basic formulation of theoretical model mentioned in Sec. II in which model equations 

are solved numerically. The numerical simulation is discussed in Sec. III. In Sec. IV, Results 

and conclusion are presented. 

II. Theoretical Model  

A) Whistler wave 

The dynamical equation for whistler wave (2D plane), which is propagating in the x-z plane 

with wave vector ˆ ˆx zk k x k z 


, in a magnetized plasma with an ambient magnetic field along 
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the z-axis is derived by two fluid models, equation of motion and wave equation, which is 

given by 
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Now, assuming envelope solution for eq. (1) 0 0 0
ˆ ˆ( )( , , ) x zi k x k z t

z zE E x z t e   , we obtained:- 
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where 0 0,  x zk k are whistler wave vector components related to the background magnetic field 

are given below. 2 2 2
0 0 0x zk k k   and ,  e i   are the skin depth of electrons and ions. And, 

2
0

04A
i

B
v

n m

 
  
 

 is the speed of the Alfven waves. 

B) Ion Acoustic wave 

     Consider a low-frequency ion-acoustic wave travelling along the z-axis parallel to the 

background magnetic field 0B


 i.e., 0 0 ˆB B z


, ˆzk k z


. Using the equations of motion for 

electrons and ions, as well as the continuity equation, the dynamical equation for IAW was 

obtained.      
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                                                                              (3) 

where 
1/2

( )B e i
s

i

k T T
c

m

 
 
 

is the speed of IAW, Bk  is the Boltzmann constant. ,  Te iT  are the 

temperature of electron and ion, respectively. ezF ( )izF is the component of ponderomotive force 

in z-direction produced by whistler wave. Now, the Ponderomotive force of the whistler wave 

is defined as, ( * . ) ( * ).
j

j j j j j w
q

F m v v v B
c

    
     Here ' 'j  denote the charged species i.e., electron 

and ion. Thus  jm , jv  and jq  are the mass, velocity, and charge of the electron and ion, 

respectively. c is the speed of light and wB  is the magnetic field due to the whistler wave. 

Obtaining the ponderomotive force components owing to whistler wave and then put their 

values in Eq. (3). We get 
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Equations (2) and (4) are normalized by using these parameters:   
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After normalization, the equation in normalized dimensionless form is given as 
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                       (5)                                   

where Eq. (5) represents the normalized dynamical equation for the whistler wave which leads 

the turbulence. Here ' '

0




 
 

 
 is the normalized growth rate, which is introduced to 

describe the beam instability driving the beam-driven whistler wave. The growth rate of the 

beam-driven whistler i.e., ' 0  is incorporated phenomenologically and its value consistent 

with the observations reported by Zhao et al. will be used in simulations here. Where,  
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III.  Numerical Simulation 

 Numerical simulation for the Eq. (5) is carried out by using a 2D pseudospectral method in a 

periodic box having domain (10 10 )   and 2(256) grid points. The imposed initial condition 

for numerical simulation is given by-  0( , ) (1 cos( ))(1 cos( ))z x zE x z a x z      .                      (6) 

Here, 0 0.5a  is the initial amplitude of the pump whistler wave and 0.1   is the magnitude 

of the perturbed electric field. The perturbation in wave-number 0.2, 0.2x z   . To begin, 
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the algorithm's accuracy was tested by translating the model equation into the nonlinear 

Schrödinger equation (NLS) and the plasmon number's consistency i.e., 2
kN E

k
  . This is 

conserved with an accuracy of the sixth decimal place. The parameters used for this numerical 

simulation in the magnetopause are, 0B 45nT , 3
0n 21cm , 5

eT 4.2 10 K  , 3 1
ce 7.9 10 rad sec  

0 ce0.2   , 5
e 1.16 10 cm   , ek 0.5  , 6 1

0xk 2.98 10 cm   , 6 1
0zk 1.72 10 cm   , n ex 0.9  ,

n ez 1.32  , 1
0nt  . From these parameters, we obtain 1c 0.2681  , 2c 1.0080 , 3c 2.4398 . 

IV. Results and conclusion 

We report the solitary structures by developing theoretical model that indicates the presence of 

turbulence formed due to nonlinear interaction of high-frequency whistler wave and low-

frequency IAW. Due to large amplitude whistler waves, ponderomotive force components 

emerge, which are included into IAW's nonlinear dynamics. The results of the numerical 

simulation of Eq. (5) applicable to magnetopause region are presented here. Fig. 1 depicts the 

evolution of coherent structures with time. We also presented the results of power spectra in 

Fig. 2, We just give the scaling of reference lines by red and green colour for inertial range and 

dissipation range respectively, and actual power spectra is given by solid curve line. 

       

 

                     Figure.1                                                                      Figure.2 

 The normalized field evolution of whistler wave    Power spectra of whistler wave at t=52                                      
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