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Current sheets in the collisionless solar wind usually have kinetic spatial scales. In-situ mea-

surements show that these current sheets are often approximately force-free, i.e. the directions

of their current density and magnetic field are aligned, despite the fact that the plasma beta

is found to be of the order of one. The measurements also often show systematic asymmetric

spatial variations of the plasma density and temperature across the current sheets, whilst the

plasma pressure is approximately uniform. Neukirch et al. (2020) [1] found exact equilibrium

models of force-free collisionless current sheets which allowed for asymmetric plasma density

and temperature gradients. These models assumed that the form of the distribution function for

electrons and ions is the same. In this contribution we generalise this approach to current sheets

with static ions. As a consequence the force-free condition is only satisfied approximately and

quasi-neutrality requires the presence of a nonvanishing electric potential.
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Figure 1: Left panel: Average profiles of magnetic field, current density, and plasma characteristics

for a data set of ∼200 discontinuities observed by the ARTEMIS spacecraft in the near-Earth solar

wind; Right panel: Theoretical profiles based on known analytical collisionless force-free current sheet

equilibria [3, 4]. These do not have the required density and temperature asymmetries.

ARTEMIS measurements of average profiles of magnetic field, current density and plasma
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characteristics of discontinuities ("current sheets") in the near-Earth solar wind [1, 2] are shown

in Fig. 1, in the four panels on the left. On the right of Fig. 1, we show theoretical profiles of the

same quantities based on exact collisionless force-free current sheet equilibria as first presented

in [3] and discussed in more detail by [4]. While it is easily possible to get a good match of the

general magnetic field, the current density and the plasma β profile, these equilibria generically

result in spatially constant particle density and temperature profiles. We remark that equilibria

with density and temperature variations that are symmetric with respect to the centre of the

current sheet have also been found [5] (for a general overview of the field see [6]).

The basic model used in [3] and [4] is a one-dimensional force-free magnetic current sheet

with the Bx component being identical to the standard Harris sheet [7], Bx = B0 tanh(z/L)

(we assume all quantities to vary only in z with a typical length scale L). The correspond-

ing By component is defined by By = B0/cosh(z/L) and hence B2
x +B2

y = B2
0 = constant. The

current density components are given by µ0 jx = (B0/L)sinh(z/L)/cosh2(z/L) and µ0 jy =

(B0/L)1/cosh2(z/L). The relevant component of the pressure tensor for maintaining the force

balance, Pzz, does not vary with z. It can be shown that self-consistent particle distribution func-

tions (DFs) for this magnetic field are given by

Fe(He, px,e, py,e) =
n0

(1+b)(
√

2πvth,e)3
e−βeHe

[
b− 1

2
eβemeu2

0/2 cos(βeu0 px,e)

+eβemeu2
0/2 eβeu0 py,e

]
, (1)

Fi(Hi, px,i, py,i) =
n0,i

(
√

2πvth,i)3
e−βiHi, (2)

where Hs = msv2/2+qsΦ is the energy for particle species s, and px,s = msvx+qsAx and py,s =

msvy +qsAy are the x- and y-components of the canonical momentum. As usual, ms is the mass

of particle species s, qs its charge, Φ(z) is the electric potential, and Ax(z) and Ay(z) are the

x- and y-components of the magnetic vector potential, which for the magnetic field above are

given by Ax = B0Larctan[sinh(z/L)] and Ay = −B0L ln[cosh(z/L] (note that for Ax a different

gauge compared to, for example, [3, 4] has been used to have an odd function of z).We have also

used the usual notation of βs = (kBTs)
−1 for the inverse temperature and the thermal velocity

vth,s = (msβs)
−1/2 of species s . The DFs also depend on the constant parameters n0 and n0,i,

which are typical particle densities, the constant velocity parameter u0 and the dimensionless

parameter b, which is linked to the plasma βp by βp = b+1/2. It can then be shown [1, 3, 4] that

self-consistency is achieved by Φ= 0 and the relations n0,i = n0(b+1/2), B0L/2=−(eβeu0)
−1,

B0/L = µ0en0u0 and B2
0/(2µ0) = n0/βe. As a result the macroscopic length scale L is given in

terms of the parameters of the DFs by L2 = 2(µ0e2βen0u2
0)
−1. As mentioned above the resulting
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particle densities are constant and hence do not explain the observed asymmetries.

To get a self-consistent current sheet model which displays asymmetries in particle density

and temperature in [1] an additional term was added to the DFs of both ions and electrons. This

additional term has the form

∆Fs = δns

(
κs

2πv2
th,s

)3/2

βsu0 px,s

(
5
2
−κsβsHs

)
eκsβsHs, (3)

with δns a constant with the dimension of a particle density and κs a dimensionless parameter

which is basically the ratio of the temperature of the original DFs defined in Eqs. (1) and (2) to

the temperature of the additional DF term (3).

Figure 2: Particle density and temperature asym-

metries introduced by adding a term of the form

(3). The parameter values used [1] are L/di = 10

(di is the ion inertial length), βp = 1.4, Te/Ti = 1.0,

mi/me = 1836, κe = κi = 1.1 and ε = 0.05. This re-

sults in u0 ≈−3.9 ·10−3vth,e.

The reason that the term (3) was added to

the ions as well as the electrons in [1] was

that this allows a self-consistent solution with

Φ = 0, with the magnetic field remaining un-

changed from above, but introduces an addi-

tional asymmetric contribution to the particle

density of the form

∆ns = εn0
2Ax

B0L
, (4)

where we have defined δns = εn0. Because

the pressure remains constant, the tempera-

ture profile has to be inversely proportional to

the particle density asymmetry. The resulting

profiles are shown in Fig. 2 for a typical set of

parameters. Whereas in the basic model DF

(2) the ions were static they are now carrying

a part of the current due to the additional term

(3). In this contribution we want to explore whether it is possible to have a current sheet model

with static ions while still retaining the features found in [1] .

To start we use the ion DF (2) in combination with the full electron DF, i.e. Eq. (1) together

with Eq. (3). The quasi-neutrality condition then becomes

n0,ie−eβiΦ−n0

{
eeβeΦ

[
b− 1

2
cos(eβeAx)+ e−eβeu0Ay

]
+ ε eβeuoAx (1+κeeβeΦ)eκeeβeΦ

}
= 0.

(5)

This equation is not solved by Φ = 0 and the force-free vector potential (Ax, Ay) forms given
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above, because the final term depends linearly on Ax and hence varies with z even in the case

Φ = 0, whereas the first two terms would be constant for Φ = 0.

In principle, one would have to solve Eq. (5) coupled with Ampère’s law numerically, but

here we make use of the fact that ε � 1 to solve Eq. (5) approximately. For simplicity, we will

also assume in this contribution that the magnetic field and hence the magnetic vector potential

remain unchanged; we intend to probe the validity of this assumption in the future. Expanding

the electric potential about Φ = 0 as

Φ = εΦ1 + . . . , (6)

and using this to expand Eq. (5) up to first order in ε we obtain the identities n0,i = n0(b+1/2)

at order ε0 and

eβeΦ1 =−
2

(b+1/2)(1+βi/βe)

Ax

B0L
, (7)

at order ε1. Substituting this result for Φ1 back into the (expanded) expression for the electron

density, we obtain

ne = n0

(
b+

1
2

)
(1+ εeβeΦ1)+ εn0

2Ax

B0L
= n0

(
b+

1
2

)
+ εn0

βi/βe

βi/βe +1
2Ax

B0L
. (8)

Comparing Eq. (8) and Eq. (4), we see that we have gained a factor βi/βe/(βi/βe +1) at order

ε which is always less than one. For βi = βe we obtain the result that the asymmetric density

component at order ε is only half of that obtained in [1].

As a next step we plan to include the magnetic field into the expansion in ε , because the cur-

rent density components are modified compared to the force-free case if the electric potential Φ

does not vanish.
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