

Alfvénic Transport in the Storm-time Magnetosphere

C. C. Chaston

Space Sciences Laboratory, University of California, Berkeley, CA, USA

In this presentation it is shown how measurements performed in Earth's magnetosphere during periods of disturbed space weather known as geomagnetic storms comprise a range of Alfvénic interactions with basic consequences for the near-Earth space environment. These interactions drive the formation of dynamic aurora and the modulation of energetic particle populations through this region of space. Here observations reported from a number of spacecraft are combined in a fluid-kinetic model to describe the energy transport and particle scattering/energisation evolution driven by these interactions. It is shown from simulations and a consideration of transport coefficients evaluated using the observations that these plasma processes are likely important drivers of the enigmatic evolution of this region of space during geomagnetic storms.