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Introduction 

 The Guiding Center (GC) description of plasma particle motion for an axisymmetric toroidal 

magnetic field configuration allows for the analytical calculation of the full Orbital Spectrum 

for a large aspect ratio equilibrium magnetic field, in terms of the three Constants Of  the Motion 

(COM). In this work, the analytical results are utilized to construct the full skeleton of the 

resonance structure in the space of the COM, along which significant particle energy and 

momentum transport takes place under the presence of non-axisymmetric perturbations. 

Moreover, we pinpoint the location and the extent of various resonances in the GC phase space 

[2] and systematically dissect the phase space with appropriate Poincare surfaces of section to 

confirm our analytical predictions. 

Guiding Center Hamiltonian 

 A general axisymmetric toroidal magnetic configuration consisting of nested toroidal flux 

surfaces can be represented in White–Boozer [1] coordinates as 𝛣 ൌ 𝑔ሺ𝜓ሻ∇𝜁 ൅ 𝐼ሺ𝜓ሻ∇𝜃 ൅

𝛿ሺ𝜓, 𝜃ሻ∇𝜓௣ where 𝜁 and 𝜃 are the toroidal and poloidal angles. The toroidal flux 𝜓 is related 

to the poloidal flux  𝜓௣ through the safety factor  𝑞ሺ𝜓ሻ ൌ 𝑑𝜓/𝑑𝜓௣. The functions 𝑔 and 𝐼 are 

related to the poloidal and toroidal currents and  𝛿 is related to the non-orthogonality of the 

coordinate system. The GC motion of a charged particle is described by the Hamiltonian 𝛨 ൌ

𝜌||
ଶ𝑩ଶ/2 ൅ 𝜇𝑩 , where 𝑩 is the magnetic field, 𝜇 is the magnetic moment and 𝜌|| is the velocity 

component parallel to the magnetic field. The three couples of canonical conjugate variables 

for this GC Hamiltonian are ሺ𝜇, 𝜉ሻ, ሺ𝑃ఏ, 𝜃ሻ and ሺ𝑃఍, 𝜁ሻ with 𝑃ఏ ൌ 𝜓 ൅ 𝜌||𝐼ሺ𝜓ሻ and 𝑃఍ ൌ

𝜌||𝑔ሺ𝜓ሻ െ 𝜓௣ [1]. The Hamiltonian can be written with respect to these canonical variables, as 

𝐻ሺ𝑃ఏ, 𝜃, 𝑃఍, 𝜁, 𝜇, 𝜉ሻ.  

 A general canonical transformation to drift orbit deviation variables transforms the above 

Hamiltonian to a new (barred) variable set [2]. The physical meaning of the new canonical 

variables becomes obvious for a Large Aspect Ratio (LAR) cylindrical equilibrium described 

by 𝑔 ൌ 1, 𝐼 ൌ 0, and 𝐵 ൌ 1 െ 𝑟𝑐𝑜𝑠𝜃, where 𝑟 ൌ ඥ2𝜓 [1]. In this case the initial variables take 

the form 𝑃ఏ ൌ 𝜓, 𝑃఍ ൌ 𝜌|| െ 𝜓௣ሺ𝜓ሻ and the barred variables 𝑃തఏ ൌ 𝜓 െ 𝜓଴  , 𝜃̅ ൌ 𝜃 െ 𝑞ିଵሺ𝜓ሻ,  
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𝑃఍ഥ ൌ 𝑃఍ ൅ 𝜓௣ሺ𝜓ሻ, 𝜁̅ ൌ 𝜁 [2]. Evaluation of the magnetic field on a particular magnetic surface 

of reference, 𝐵൫𝜓, 𝜃൯ → 𝐵ሺ𝜓଴, 𝜃ሻ, whereas the GC deviation from a field line and particle drifts 

are possible, allows for the analytical calculation of the full Orbital Spectrum. The magnetic 

surface of reference   𝜓଴   can be written in terms of the Constants Of the Motion (COM) 

variables  ሺ𝐸, 𝜇,   𝑃఍ሻ [3]. The corresponding configuration space is depicted in Fig. 1. 

 
Figure 1: The projection on ሺ𝑃ఏ, 𝜃ሻ plane of the trajectories in configuration space for fixed value of 𝜇 ൌ

1.27 ∙ 10ିସ. Orange line depicts the maximum magnetic surface, which for the case of a LAR equilibrium equals  

𝑟 ൌ 0.5 . Solid lines are the trajectories for the Full motion whereas dash lines are the trajectories when the 

magnetic field is evaluated on a magnetic surface of reference  𝜓଴ . Co-Passing, Counter-Passing and Trapped 

orbits were obtained for 𝑃఍ ൌ  െ0.08  . Stagnated (potato) orbits were obtained for 𝑃఍ ൌ  െ0.002  . The magnetic 

surface of reference have been chosen to be   𝜓଴ ൌ  െ𝑃఍  for Trapped,  𝜓଴ ൌ  െ𝑃఍ െ ඥ2ሺ𝐸 െ 𝜇ሻ  for Counter 

passing and 𝜓଴ ൌ  െ𝑃఍ ൅ ඥ2ሺ𝐸 െ 𝜇ሻ  for Co-Passing orbits respectively [3]. Significant agreement is observed 

between the exact trajectories (solid lines) and the trajectories with the magnetic field evaluated at 𝜓଴. 

Analytical calculation of the Actions and the Orbital Frequencies 

 The action-angle transformation 𝐻ഥ൫𝑃఍ഥ , 𝜁,̅ 𝑃തఏ, 𝜃̅, 𝜇̅, 𝜉̅൯ ↔ 𝛨෡൫𝐽఍, 𝐽ఏ, 𝐽క൯ allows for the analytical 

calculation of the orbital frequencies for the three degrees of freedom. Therefore: 

𝜔ෝ఍ ൌ డு෡

డ௃അ
, 𝜔ෝఏ ൌ െ𝜔ෝ఍

డ௃അ

డ௃ഇ
, 𝜔ෝక ൌ െ𝜔ෝ఍

డ௃അ

డ௃഍
 

where 𝜔ෝ఍ is the bounce/transit frequency, 𝜔ෝఏ is the bounce/transit-averaged toroidal precession 

frequency, 𝜔ෝక is the bounce/transit-averaged gyration frequency and (𝐽఍, 𝐽ఏ, 𝐽క) are the actions. 

The three actions and the bounce (b) / transit (t) frequencies are given by the analytical 

expressions 

𝐽఍
௕ ൌ ଼௤ሺటబሻ√ఓ௥

గఎሺଵି௥ሻ
ሾሺ𝜂𝑘 െ 1ሻ𝛱ሺ𝜂𝑘, 𝑘ሻ ൅ 𝐾ሺ𝑘ሻሿ,  𝐽఍

௧ ൌ ସ௤ሺటబሻ√ఓ௥

గఎሺଵି௥ሻ√௞
ሾሺ𝜂𝑘 െ 1ሻ𝛱ሺ𝜂, 𝑘ିଵሻ ൅ 𝐾ሺ𝑘ିଵሻሿ 
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𝐽ఏ
௕,௧ ൌ െ𝑞ሺ𝜓଴ሻ൫𝑃఍ ൅ 𝜓௣ሺ𝜓଴ሻ൯,     𝐽క

௕,௧ ൌ 𝜇,     𝜔ෝ఍
௕ ൌ గሺଵି௥ሻ√ఓ௥

ଶ௤ሺటబሻ௽ሺఎ௞,௞ሻ
 ,     𝜔ෝ఍

௧ ൌ గ√௞ሺଵି௥ሻ√ఓ௥

ଶ௤ሺటబሻ௽ሺఎ,௞షభሻ
 

where 𝑟 ൌ ඥ2𝜓଴, 𝑘 ൌ ௲ିఓሺଵି௥ሻ

ଶఓ௥
, 𝑛 ൌ െ ଶ௥

ଵି௥
. The analytically expressions for the frequencies 

𝜔ෝఏ and 𝜔ෝక are too lengthy to be given here.  The expression of the magnetic surface of reference  

𝜓଴  in terms of the COM variables ሺ𝐸, 𝜇, 𝑃఍ሻ enables us to express the Actions in terms of the 

constants of the motion of the initial system, thereby the ratio   ఠ
ෝ ഇ

ఠෝ അ
ൌ  െ

డ௃അ

డ௃ഇ
  can be written as a 

function of  ሺ𝐸, 𝜇, 𝑃఍ሻ. Resonance conditions correspond to rational values of this ratio in the 

COM space (Fig. 2). 

 

Figure 2: Red solid lines are the lines on ሺ𝐸, 𝑃఍ሻ  plane where the equation  
ఠෝ ഇ

ఠෝ അ
ൌ െ

డ௃അ

డ௃ഇ
ൌ

௠

௡
   is fulfilled, setting 𝜇 ൌ

1.27 ∙ 10ିସ.   Black dash and solid parabola lines depict the Left and Right Wall respectively, while orange solid 
line depicts the magnetic axis. The black solid straight line corresponds to a constant energy value, on this energy 
different resonances take place on different  𝑃఍ values. Black dots on 𝑃఍ = -0.08 denote the points on ሺ𝐸, 𝑃఍ሻ  plane 

where Trapped, Co-Passing and Counter-Passing orbits in Fig. 1 take place whereas black dots on  𝑃఍ ൌ  െ0.002  
denote the stagnated orbits for which we observe that they are very close to the magnetic axis. 

Non-axisymmetric Perturbations and Resonance Conditions 

The presence of non-axisymmetric perturbations results in a Hamiltonian of the form: 

𝐻 ൌ 𝛨෡൫𝐽఍, 𝐽ఏ, 𝐽క൯ ൅ ෍ 𝐻௠,௡,௟

௠,௡,௟

ሺ𝐽఍, 𝐽ఏ, 𝐽కሻexp ൣ𝑖ሺ𝑚𝜃෠ െ 𝑛𝜁መሻ൧ 

The perturbations affect particle and momentum transport in a resonant fashion. The 

interactions with perturbations take place in a constant energy surface. The resonance condition 

𝑚𝜔ෝఏ െ 𝑛𝜔ෝ఍ ൌ 0 and the energy conservation condition 𝛨෡൫𝐽఍, 𝐽ఏ, 𝐽క൯ ൌ 𝐶, writing the Actions 

in terms of  ሺ𝐸, 𝜇, 𝑃఍ሻ, allow us to pinpoint the exact locations of resonances in the COM space 

as shown in Fig. 2. An illustration is given in Fig.3 where the Poincare plots constructed for the 

perturbed Hamiltonian: 
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𝐻 ൌ 𝐻଴൫𝜁, 𝑃఍, 𝜃, 𝑃ఏ, 𝜉, 𝜇൯ ൅ 𝜀 ∙ sin ሺ𝑚 ∙ 𝜃 െ 𝑛 ∙ 𝜁ሻ 

    
Figure 3: Left, the Poincare plot for m=1, n=5. Right, the Poincare plot for m=1, n=14. Both plots correspond to 
the constant energy 𝐸 ൌ  1.19 ∙ 10ିସ  and  𝜇 ൌ 1.27 ∙ 10ିସ.  We observe that on  𝑃఍  values which are indicated 
in Fig. 2 by the intersection points of the black solid straight line 𝐸 ൌ  1.19 ∙ 10ିସ with the red solid lines of 
resonances 1/5 and 1/14 the resonant islands in Poincare plots indeed appear. 

Summary and Conclusions 

 Evaluation of the magnetic field on a particular magnetic surface of reference leads to 

analytical expressions for the frequencies and show a remarkable agreement with numerically 

calculated frequencies. The Action-Angle transformation allows for determining the resonance 

conditions under particle interaction with non-axisymmetric perturbations that affect energy, 

momentum and particle transport in toroidal plasma configurations and the application of 

standard canonical perturbation methods as well as the systematic dynamical reduction and the 

formulation of a bounce-kinetic description.  
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