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Introduction

The Guiding Center (GC) description of plasma particle motion for an axisymmetric toroidal
magnetic field configuration allows for the analytical calculation of the full Orbital Spectrum
for a large aspect ratio equilibrium magnetic field, in terms of the three Constants Of the Motion
(COM). In this work, the analytical results are utilized to construct the full skeleton of the
resonance structure in the space of the COM, along which significant particle energy and
momentum transport takes place under the presence of non-axisymmetric perturbations.
Moreover, we pinpoint the location and the extent of various resonances in the GC phase space
[2] and systematically dissect the phase space with appropriate Poincare surfaces of section to

confirm our analytical predictions.

Guiding Center Hamiltonian

A general axisymmetric toroidal magnetic configuration consisting of nested toroidal flux
surfaces can be represented in White—Boozer [1] coordinates as B = g(y)V{ + I1())V6 +
(Y, )V, where ¢ and 6 are the toroidal and poloidal angles. The toroidal flux v is related
to the poloidal flux ,, through the safety factor q(1) = dy/dy,. The functions g and I are
related to the poloidal and toroidal currents and ¢ is related to the non-orthogonality of the
coordinate system. The GC motion of a charged particle is described by the Hamiltonian H =
pﬁB2 /2 + uB , where B is the magnetic field, u is the magnetic moment and p; is the velocity
component parallel to the magnetic field. The three couples of canonical conjugate variables
for this GC Hamiltonian are (&), (Pg,0) and (P, {) with Pg =9 + pI(¥) and P; =
p,19(@) — P, [1]. The Hamiltonian can be written with respect to these canonical variables, as
H(Py,0,P;, ¢, 1, $).

A general canonical transformation to drift orbit deviation variables transforms the above
Hamiltonian to a new (barred) variable set [2]. The physical meaning of the new canonical
variables becomes obvious for a Large Aspect Ratio (LAR) cylindrical equilibrium described
byg=1,1=0,and B =1 —rcosf, wherer = \/ﬁ [1]. In this case the initial variables take
the form Py = ¢, P; = p;| — Y, (¥) and the barred variables Po=yY—1,,0=0—-q '),
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F{ =P, +yY,(¥), { = { [2]. Evaluation of the magnetic field on a particular magnetic surface
of reference, B (l/), 9) — B(y, 6), whereas the GC deviation from a field line and particle drifts
are possible, allows for the analytical calculation of the full Orbital Spectrum. The magnetic
surface of reference 1, can be written in terms of the Constants Of the Motion (COM)

variables (E, u, P;) [3]. The corresponding configuration space is depicted in Fig. 1.
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Figure 1: The projection on (Py,8) plane of the trajectories in configuration space for fixed value of u =
1.27 - 10~*. Orange line depicts the maximum magnetic surface, which for the case of a LAR equilibrium equals

r = 0.5 . Solid lines are the trajectories for the Full motion whereas dash lines are the trajectories when the
magnetic field is evaluated on a magnetic surface of reference 1, . Co-Passing, Counter-Passing and Trapped
orbits were obtained for P, = —0.08 . Stagnated (potato) orbits were obtained for P, = —0.002 . The magnetic
surface of reference have been chosen to be Y, = —P; for Trapped, Yo = —P; — /2(E — ) for Counter

passing and Yy = —P; + /2(E — u) for Co-Passing orbits respectively [3]. Significant agreement is observed

between the exact trajectories (solid lines) and the trajectories with the magnetic field evaluated at 1.
Analytical calculation of the Actions and the Orbital Frequencies
The action-angle transformation H (17{, {,Pg,0,1,&) & H (](, Jo, ]E) allows for the analytical

calculation of the orbital frequencies for the three degrees of freedom. Therefore:

on
6]5’

N P
Wy = (1){ 3o (Ust = O)( 6]{

&)} =
where @y is the bounce/transit frequency, @y is the bounce/transit-averaged toroidal precession
frequency, @ is the bounce/transit-averaged gyration frequency and (J¢, Jg, J¢) are the actions.
The three actions and the bounce (b) / transit (t) frequencies are given by the analytical

expressions

Jb = SN [(rke — )11 Grk, k) + K ()], JE = LD (ke — 1)1 (n, k™) + K (™)
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where r = /29, k = %, n= —fTrr. The analytically expressions for the frequencies

@g and &g are too lengthy to be given here. The expression of the magnetic surface of reference
Y, in terms of the COM variables (E, u, P;) enables us to express the Actions in terms of the

. c e .B 0 .
constants of the motion of the initial system, thereby the ratio 2= _ # can be written as a
[

function of (E, p, P;). Resonance conditions correspond to rational values of this ratio in the

COM space (Fig. 2).
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Figure 2: Red solid lines are the lines on (E, P;) plane where the equation % = - % = % is fulfilled, setting p =
4 0

1.27 - 10~*. Black dash and solid parabola lines depict the Left and Right Wall respectively, while orange solid
line depicts the magnetic axis. The black solid straight line corresponds to a constant energy value, on this energy
different resonances take place on different P; values. Black dots on P; =-0.08 denote the points on (E, P;) plane

where Trapped, Co-Passing and Counter-Passing orbits in Fig. 1 take place whereas black dots on P; = —0.002
denote the stagnated orbits for which we observe that they are very close to the magnetic axis.

Non-axisymmetric Perturbations and Resonance Conditions
The presence of non-axisymmetric perturbations results in a Hamiltonian of the form:

H=A(gJo.Je) + ) Hunt Us.Jo J)exp [imd — nd)]

mmn,l
The perturbations affect particle and momentum transport in a resonant fashion. The

interactions with perturbations take place in a constant energy surface. The resonance condition
mdg — n&; = 0 and the energy conservation condition q (](, Jo ]5) = C, writing the Actions
in terms of (E, p, P;),allow us to pinpoint the exact locations of resonances in the COM space

as shown in Fig. 2. An illustration is given in Fig.3 where the Poincare plots constructed for the

perturbed Hamiltonian:
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H= Ho(z,Pz,H,Pg,f,H) +e-sin(m-0—n-Q)
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Figure 3: Left, the Poincare plot for m=1, n=5. Right, the Poincare plot for m=1, n=14. Both plots correspond to
the constant energy E = 1.19-10* and u = 1.27 - 10~*. We observe that on P; values which are indicated
in Fig. 2 by the intersection points of the black solid straight line E = 1.19 - 10~* with the red solid lines of
resonances 1/5 and 1/14 the resonant islands in Poincare plots indeed appear.

Summary and Conclusions
Evaluation of the magnetic field on a particular magnetic surface of reference leads to
analytical expressions for the frequencies and show a remarkable agreement with numerically
calculated frequencies. The Action-Angle transformation allows for determining the resonance
conditions under particle interaction with non-axisymmetric perturbations that affect energy,
momentum and particle transport in toroidal plasma configurations and the application of
standard canonical perturbation methods as well as the systematic dynamical reduction and the

formulation of a bounce-kinetic description.
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