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In NBI-heating experiments in small or medium-size devices such as Heliotron-J and CFQS,

the charge exchange (CX) loss of NB-produced fast ions is not negligible in the determination

of the fast ions slowing down velocity distribution function. Although it may be possible for

many numerical simulation methods for the fast ions to include this loss mechanism, experi-

mental measurements of the neutral particle density profile in the 3-dimmensional real space

as the input to such calculations are almost impossible. On the other hand, the FIDA (Fast Ion

D-alpha) measurements1 are now widely used in various experimental devices for investigating

the local fast ion velocity distribution. In situations where the CX loss is not negligible and

the neutral particle density profile is unknown, this method is not useful for the purpose of the

experimental validation of theoretical calculations of the velocity distribution. For the studies

of beam-driven neoclassical phenomena such as that in Refs.2-3, and the anisotropic pressure

MHD equilibrium states mentioned in Ref.4, however, the requirement on the slowing down

velocity distribution is not in the detailed understanding on the slowing down process including

the CX loss but in the energy space reduction factor of the lower Legendre order structures

of the velocity distribution. As shown below, in both of the direct solving method using the

eigenfunction3 and the indirect solving method based on the adjoint equation method4, it can

be shown that for this purpose that the effect of the CX loss on the velocity distribution will

not appear in the pitch-angle space structure but will appear only in the energy space structure.

When we find the substantial neutral particle density by comparison of the FIDASIM1 calcula-

tion including this energy space reduction factor and the experimentally observed Balmer-alpha

spectrum, we should include this reduction factor also in the calculations of the beam-driven

neoclassical phenomena2,3, the analyses of the anisotropic pressure MHD equilibriums states4,

and heating power calculations.

Firstly, we shall consider how the formulas in Ref.3 for the flux-surface-averaged 1st Legen-

dre order component are modified by the CX loss term. When the CX loss term to the Coulomb
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collision operator for the fast ions
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the expansion form using the eigenfunctions for the circulating pitch-angle 0 ≤ λ ≤ 1 for λ ≡

(1− ξ 2)BM/B is as following. Although it is not guaranteed that this time constant is surface-

quantity, here we assume that it is surface quantity for investigating a surface-averaged effect

for this pitch-angle range that makes the dominant contribution to the and the that will discussed

below in the tangential NB injections in the Heliotron-J and the CFQS. The solubility condition
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for this pitch-angle range expressed by using the eigenfunctions that is defined by
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for 0 ≤ v < vb. Together with the function
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describing the dependence of energy (v) space structure on the eigenvalues κn , here we shall

introduce analogous another function
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for the v-space structure affected the CX loss. By using them, the solution of the solubility

condition Eq.(4) is given by
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This modification on the v-space structure is valid also for the surface-averaged lowest Legen-

dre order component
⟨∫ 1

−1 f fdξ
⟩

that is mentioned in Ref.3.

Next issue is how the formulas in Ref.4 for the surface-averaged 2nd Legendre order compo-

nent
⟨∫ 1

−1 P2(ξ ) f fdξ/B
⟩

are modified. The adjoint equation method explained in that reference
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is useful even when the CX loss term is added to the usual Coulomb collision term since the

relation
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even when the CX loss terms −1/τcx(v) are added to them. Analogous to Ref.4, we should

solve the ajoint equation
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Because of Eq.(9), the adjoint equation an be rewritten as follows:
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For the separated component GA, we shall use the usual asymptotic expansion method for the

long mean free path condition Z2/(vcτS)≪
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circulating pitch-angle 0 ≤ λ ≤ 1 can be solved analytically when the CX loss term for as a

minor component in the total solution is partly neglected and Eqs.(10-12) are used. The result

for the 0th order of (vcτS)
−1 is

fA (θ ,ζ ,vb,λ ) =− 1
BM

(
1− 3

2λ
)∫ vb

0
v2H2(v)

v2vTe(3
√

π/2)G(xe)+v3
c

W (v)
W (vb)

{
V (v)
V (vb)

}Z2
dv

−∑
n

⟨
(BM/B−1)

∫ 1
0 Λn

{
∂ (1−λB/BM)1/2/∂λ

}
dλ

⟩
BM

⟨∫ 1
0 Λ2

n

{
∂ (1−λB/BM)1/2/∂λ

}
dλ

⟩
×Λn(λ )

∫ vb
0

v2H2(v)
v2vTe(3

√
π/2)G(xe)+v3

c

× W (v)
W (vb)

[{
V (v)
V (vb)

}Z2
+ κn

κn−3

{{
V (v)
V (vb)

}Z2κn/3
−
{

V (v)
V (vb)

}Z2
}]

dv.

(15)

48th EPS Conference on Plasma Physics P5a.122



By comparing these results with those in Refs.3-4, we can fined that, for the purpose of fast-

ion-driven neoclassical phenomena, anisotropic pressure MHD equilibrium, and heating power

calculations, the essential difference of the slowing down velocity distributions with and without

the CX loss is the v-space reduction factor W (v)/W (vb). For using the FIDA as an experimental

measurement of this reduction factor, the FIDASIM1 calculation including this factor is now

under preparation. An example of measured Balmer alpha spectrum in the Heliotron-J will be

presented in the poster.
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